Do you want to publish a course? Click here

Kondo effect with Wilson fermions

108   0   0.0 ( 0 )
 Added by Kei Suzuki
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the Kondo effect with Wilson fermions. This is based on a mean-field approach for the chiral Gross-Neveu model including four-point interactions between a light Wilson fermion and a heavy fermion. For massless Wilson fermions, we demonstrate the appearance of the Kondo effect. We point out that there is a coexistence phase with both the light-fermion scalar condensate and Kondo condensate, and the critical chemical potentials of the scalar condensate are shifted by the Kondo effect. For negative-mass Wilson fermions, we find that the Kondo effect is favored near the parameter region realizing the Aoki phase. Our findings will be useful for understanding the roles of heavy impurities in Dirac semimetals, topological insulators, and lattice QCD simulations.



rate research

Read More

QCD is investigated at finite temperature using Wilson fermions in the fixed scale approach. A 2+1 flavor stout and clover improved action is used at four lattice spacings allowing for control over discretization errors. The light quark masses in this first study are fixed to heavier than physical values. The renormalized chiral condensate, quark number susceptibility and the Polyakov loop is measured and the results are compared with the staggered formulation in the fixed N_t approach. The Wilson results at the finest lattice spacing agree with the staggered results at the highest N_t.
We propose a definition of the Casimir energy for free lattice fermions. From this definition, we study the Casimir effects for the massless or massive naive fermion, Wilson fermion, and (Mobius) domain-wall fermion in $1+1$ dimensional spacetime with the spatial periodic or antiperiodic boundary condition. For the naive fermion, we find an oscillatory behavior of the Casimir energy, which is caused by the difference between odd and even lattice sizes. For the Wilson fermion, in the small lattice size of $N geq 3$, the Casimir energy agrees very well with that of the continuum theory, which suggests that we can control the discretization artifacts for the Casimir effect measured in lattice simulations. We also investigate the dependence on the parameters tunable in Mobius domain-wall fermions. Our findings will be observed both in condensed matter systems and in lattice simulations with a small size.
We study the phase structure of imaginary chemical potential. We calculate the Polyakov loop using clover-improved Wilson action and renormalization improved gauge action. We obtain a two-state signals indicating the first order phase transition for $beta = 1.9, mu_I = 0.2618, kappa=0.1388$ on $8^3times 4$ lattice volume We also present a result of the matrix reduction formula for the Wilson fermion.
We present results of our ongoing determination of string breaking in full QCD with N_f=2 Wilson fermions. Our investigation of the fission of the static quark-antiquark string into a static-light meson-antimeson system is based on dynamical configurations of size 24^3 x 40 produced by the TxL collaboration. Combining various optimization methods we determine the matrix elements of the two-by-two system with so far unprecedented accuracy. The all-to-all light quark propagators occurring in the transition element are computed from eigenmodes of the Hermitian Wilson-Dirac matrix complemented by stochastic estimates in the orthogonal subspace. We observe a clear signature for level-splitting between ground state and excited potential. Thus, for the first time, string breaking induced by sea quarks is observed in a simulation of 4-dimensional lattice-QCD.
We investigate two different types of relativistic Kondo effects, distinguished by heavy-impurity degrees of freedom, by focusing on the energy-momentum dispersion relations of the ground state with condensates composed of a light Dirac fermion and a nonrelativistic impurity fermion. Heavy fermion degrees of freedom are introduced in terms of two types of heavy-fermion effective theories, in other words, two heavy-fermion limits for the heavy Dirac fermion, which are known as the heavy-quark effective theories (HQETs) in high-energy physics. While the first one includes only the heavy-particle component, the second one contains both the heavy-particle and heavy-antiparticle components, which are opposite in their parity. From these theories, we obtain two types of Kondo effects, in which the dispersions near the Fermi surface are very similar, but they differ in the structure at low momentum. We also classify the possible forms of condensates in the two limits. The two Kondo effects will be examined by experiments with Dirac/Weyl semimetals or quark matter, lattice simulations, and cold-atom simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا