Do you want to publish a course? Click here

Optimization of a multi-TW few-cycle 1.7-$mu$m source based on Type-I BBO dual-chirped optical parametric amplification

68   0   0.0 ( 0 )
 Added by Eiji Takahashi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents the optimization of a dual-chirped optical parametric amplification (DC-OPA) scheme for producing an ultrafast intense infrared (IR) pulse. By employing a total energy of 0.77 J Ti:sapphire pump laser and type-I BBO crystals, an IR pulse energy at the center wavelength of 1.7 $mu$m exceeded 0.1 J using the optimized DC-OPA. By adjusting the injected seed spectrum and prism pair compressor with a gross throughput of over 70 %, the 1.7-$mu$m pulse was compressed to 31 fs, which resulted in a peak power of up to 2.3 TW. Based on the demonstration of the BBO type-I DC-OPA, we propose a novel OPA scheme called the $dual~pump$ DC-OPA for producing a high-energy IR pulse with a two-cycle duration.



rate research

Read More

475 - Jing Wang , Jingui Ma , Peng Yuan 2015
We experimentally study a new kind of parametric noise that is initiated from signal scattering and enhanced through optical parametric amplification. Such scattering noise behaves similarly to the parametric super-fluorescence in the spatial domain, yet is typically much stronger. In the time domain, it inherits the chirp of signal pulses and can be well compressed. We demonstrate that this scattering-initiated parametric noise has little influence on the amplified pulse contrast but can degrade the conversion efficiency substantially.
75 - C. P. Hauri 2004
Phase-stabilized 12-fs, 1-nJ pulses from a commercial Ti:sapphire oscillator are directly amplified in a chirped-pulse optical parametric amplifier and recompressed to yield near-transform-limited 17.3-fs pulses. The amplification process is demonstrated to be phase preserving and leads to 85-uJ, carrier-envelope-offset phase-locked pulses at 1 kHz for 0.9 mJ of pump, corresponding to a single-pass gain of 8.5 x 10^4.
We present a versatile mid-infrared frequency comb spectroscopy system based on a doubly resonant optical parametric oscillator tunable in the 3-5.4 {mu}m range and two detection methods, a Fourier transform spectrometer (FTS) and a Vernier spectrometer. Using the FTS with a multipass cell we measure high-precision broadband absorption spectra of CH$_4$ and NO at ~3.3 {mu}m and ~5.2 {mu}m, respectively, and of atmospheric species (CH$_4$, CO, CO$_2$ and H$_2$O) in air in the signal and idler wavelength range. The figure of merit of the system is on the order of 10$^{-8}$ cm$^{-1}$ Hz$^{-1/2}$ per spectral element, and multiline fitting yields minimum detectable concentrations of 10-20 ppb Hz$^{-1/2}$ for CH$_4$, NO and CO. For the first time in the mid-infrared, we perform continuous-filtering Vernier spectroscopy using a low finesse enhancement cavity, a grating and a single detector, and measure the absorption spectrum of CH$_4$ and H$_2$O in ambient air at ~3.3 {mu}m.
The measurement of transient optical fields has proven critical to understanding the dynamical mechanisms underlying ultrafast physical and chemical phenomena, and is key to realizing higher speeds in electronics and telecommunications. Complete characterization of optical waveforms, however, requires an optical oscilloscope capable of resolving the electric field oscillations with sub-femtosecond resolution and with single-shot operation. Here, we show that strong-field nonlinear excitation of photocurrents in a silicon-based image sensor chip can provide the sub-cycle optical gate necessary to characterize carrier-envelope phase-stable optical waveforms in the mid-infrared. By mapping the temporal delay between an intense excitation and weak perturbing pulse onto a transverse spatial coordinate of the image sensor, we show that the technique allows single-shot measurement of few-cycle waveforms.
280 - K. Somiya , J. Kato , K. Yano 2014
An optical cavity consisting of optically trapped mirrors makes a resonant bar that can be stiffer than diamond. A limitation of the stiffness arises in the length of the optical bar as a consequence of the finite light speed. High laser power and light mass mirrors are essential for realization of a long and stiff optical bar that can be useful for example in the gravitational-wave detector aiming at the observation of a signal from neutron-star collisions, supernovae, etc. In this letter, we introduce a parametric signal amplification scheme that realizes the long and stiff optical bar without the need to increase the laser power.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا