No Arabic abstract
An optical cavity consisting of optically trapped mirrors makes a resonant bar that can be stiffer than diamond. A limitation of the stiffness arises in the length of the optical bar as a consequence of the finite light speed. High laser power and light mass mirrors are essential for realization of a long and stiff optical bar that can be useful for example in the gravitational-wave detector aiming at the observation of a signal from neutron-star collisions, supernovae, etc. In this letter, we introduce a parametric signal amplification scheme that realizes the long and stiff optical bar without the need to increase the laser power.
We experimentally study a new kind of parametric noise that is initiated from signal scattering and enhanced through optical parametric amplification. Such scattering noise behaves similarly to the parametric super-fluorescence in the spatial domain, yet is typically much stronger. In the time domain, it inherits the chirp of signal pulses and can be well compressed. We demonstrate that this scattering-initiated parametric noise has little influence on the amplified pulse contrast but can degrade the conversion efficiency substantially.
We introduce a weakly coupled photonic crystal waveguide as a promising and realistic model for all-optical amplification. A symmetric pillar type coupled photonic crystal waveguide consisting of dielectric rods periodically distributed in a free space is proposed as all-optical amplifier. Using the unique features of the photonic crystals to control and guide the light, we have properly chosen the frequency at which only one mode (odd mode) becomes the propagating mode in the coupled photonic crystal waveguide, whereas another mode (even mode) is completely reflected from the guiding structure. Under this condition, the all-optical amplification is fully realized. The amplification coefficient for the continuous signal and the Gaussian pulse is calculated.
Phase-stabilized 12-fs, 1-nJ pulses from a commercial Ti:sapphire oscillator are directly amplified in a chirped-pulse optical parametric amplifier and recompressed to yield near-transform-limited 17.3-fs pulses. The amplification process is demonstrated to be phase preserving and leads to 85-uJ, carrier-envelope-offset phase-locked pulses at 1 kHz for 0.9 mJ of pump, corresponding to a single-pass gain of 8.5 x 10^4.
Of course not, but if one believes that information cannot be destroyed in a theory of quantum gravity, then we run into apparent contradictions with quantum theory when we consider evaporating black holes. Namely that the no-cloning theorem or the principle of entanglement monogamy is violated. Here, we show that neither violation need hold, since, in arguing that black holes lead to cloning or non-monogamy, one needs to assume a tensor product structure between two points in space-time that could instead be viewed as causally connected. In the latter case, one is violating the semi-classical causal structure of space, which is a strictly weaker implication than cloning or non-monogamy. We show that the lack of monogamy that can emerge in evaporating space times is one that is allowed in quantum mechanics, and is very naturally related to a lack of monogamy of correlations of outputs of measurements performed at subsequent instances of time of a single system. A particular example of this is the Horowitz-Maldacena proposal, and we argue that it neednt lead to cloning or violations of entanglement monogamy. For measurements on systems which appear to be leaving a black hole, we introduce the notion of the temporal product, and argue that it is just as natural a choice for measurements as the tensor product. For black holes, the tensor and temporal products have the same measurement statistics, but result in different type of non-monogamy of correlations, with the former being forbidden in quantum theory while the latter is allowed. In the case of the AMPS firewall experiment we find that the entanglement structure is modified, and one must have entanglement between the infalling Hawking partners and early time outgoing Hawking radiation which surprisingly tame violation of entanglement monogamy.
Topological insulators possess protected boundary states which are robust against disorders and have immense implications in both fermionic and bosonic systems. Harnessing these topological effects in non-equilibrium scenarios is highly desirable and has led to the development of topological lasers. The topologically protected boundary states usually lie within the bulk bandgap, and selectively exciting them without inducing instability in the bulk modes of bosonic systems is challenging. Here, we consider topological parametrically driven nonlinear resonator arrays that possess complex eigenvalues only in the edge modes in spite of the uniform pumping. We show parametric oscillation occurs in the topological boundary modes of one and two-dimensional systems as well as in the corner modes of a higher-order topological insulator system. Furthermore, we demonstrate squeezing dynamics below the oscillation threshold, where the quantum properties of the topological edge modes are robust against certain disorders. Our work sheds light on the dynamics of weakly nonlinear topological systems driven out of equilibrium and reveals their intriguing behavior in the quantum regime.