Do you want to publish a course? Click here

Machine learning spectral indicators of topology

85   0   0.0 ( 0 )
 Added by Mingda Li
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological materials discovery has emerged as an important frontier in condensed matter physics. Recent theoretical approaches based on symmetry indicators and topological quantum chemistry have been used to identify thousands of candidate topological materials, yet experimental determination of materials topology often poses significant technical challenges. X-ray absorption spectroscopy (XAS) is a widely-used materials characterization technique sensitive to atoms local symmetry and chemical environment; thus, it may encode signatures of materials topology, though indirectly. In this work, we show that XAS can potentially uncover materials topology when augmented by machine learning. By labelling computed X-ray absorption near-edge structure (XANES) spectra of over 16,000 inorganic materials with their topological class, we establish a machine learning-based classifier of topology with XANES spectral inputs. Our classifier correctly predicts 81% of topological and 80% of trivial cases, and can achieve 90% and higher accuracy for materials containing certain elements. Given the simplicity of the XAS setup and its compatibility with multimodal sample environments, the proposed machine learning-empowered XAS topological indicator has the potential to discover broader categories of topological materials, such as non-cleavable compounds and amorphous materials. It can also inform a variety of field-driven phenomena in situ, such as magnetic field-driven topological phase transitions.



rate research

Read More

A feed-forward neural network has a remarkable property which allows the network itself to be a universal approximator for any functions.Here we present a universal, machine-learning based solver for multi-variable partial differential equations. The algorithm approximates the target functions by neural networks and adjusts the network parameters to approach the desirable solutions.The idea can be easily adopted for dealing with multi-variable, coupled integrodifferential equations, such as those in the self-consistent field theory for predicting polymer microphase-separated structures.
The study of topological bandstructures is an active area of research in condensed matter physics and beyond. Here, we combine recent progress in this field with developments in machine-learning, another rising topic of interest. Specifically, we introduce an unsupervised machine-learning approach that searches for and retrieves paths of adiabatic deformations between Hamiltonians, thereby clustering them according to their topological properties. The algorithm is general as it does not rely on a specific parameterization of the Hamiltonian and is readily applicable to any symmetry class. We demonstrate the approach using several different models in both one and two spatial dimensions and for different symmetry classes with and without crystalline symmetries. Accordingly, it is also shown how trivial and topological phases can be diagnosed upon comparing with a generally designated set of trivial atomic insulators.
Determining the phase diagram of systems consisting of smaller subsystems connected via a tunable coupling is a challenging task relevant for a variety of physical settings. A general question is whether new phases, not present in the uncoupled limit, may arise. We use machine learning to study layered spin models, in which the spin variables constituting each of the uncoupled systems (to which we refer as layers) are coupled to each other via an interlayer coupling. In such systems, in general, composite order parameters involving spins of different layers may emerge as a consequence of the interlayer coupling. We focus on the layered Ising and Ashkin-Teller models as a paradigmatic case study, determining their phase diagram via the application of a machine learning algorithm to the Monte Carlo data. Remarkably our technique is able to correctly characterize all the system phases also in the case of hidden order parameters, i.e., order parameters whose expression in terms of the microscopic configurations would require additional preprocessing of the data fed to the algorithm. We correctly retrieve the three known phases of the Ashkin-Teller model with ferromagnetic couplings, including the phase described by a composite order parameter. For the bilayer and trilayer Ising models the phases we find are only the ferromagnetic and the paramagnetic ones. Within the approach we introduce, owing to the construction of convolutional neural networks, naturally suitable for layered image-like data with arbitrary number of layers, no preprocessing of the Monte Carlo data is needed, also with regard to its spatial structure. The physical meaning of our results is discussed and compared with analytical data, where available. Yet, the method can be used without any a priori knowledge of the phases one seeks to find and can be applied to other models and structures.
We study the effect of strong disorder on topology and entanglement in quench dynamics. Although disorder-induced topological phases have been well studied in equilibrium, the disorder-induced topology in quench dynamics has not been explored. In this work, we predict a disorder-induced topology of post-quench states characterized by the quantized dynamical Chern number and the crossings in the entanglement spectrum in $(1+1)$ dimensions. The dynamical Chern number undergoes transitions from zero to unity, and back to zero when increasing the disorder strength. The boundaries between different dynamical Chern numbers are determined by delocalized critical points in the post-quench Hamiltonian with the strong disorder. An experimental realization in quantum walks is discussed.
Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation functionals for density functional theory. So far, most of those machine learned functionals are trained for systems with an integer number of particles. As such, they are unable to reproduce some crucial and fundamental aspects, such as the explicit dependency of the functionals on the particle number or the infamous derivative discontinuity at integer particle numbers. Here we propose a solution to these problems by training a neural network as the universal functional of density-functional theory that (i) depends explicitly on the number of particles with a piece-wise linearity between the integer numbers and (ii) reproduces the derivative discontinuity of the exchange-correlation energy. This is achieved by using an ensemble formalism, a training set containing fractional densities, and an explicitly discontinuous formulation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا