No Arabic abstract
The study of topological bandstructures is an active area of research in condensed matter physics and beyond. Here, we combine recent progress in this field with developments in machine-learning, another rising topic of interest. Specifically, we introduce an unsupervised machine-learning approach that searches for and retrieves paths of adiabatic deformations between Hamiltonians, thereby clustering them according to their topological properties. The algorithm is general as it does not rely on a specific parameterization of the Hamiltonian and is readily applicable to any symmetry class. We demonstrate the approach using several different models in both one and two spatial dimensions and for different symmetry classes with and without crystalline symmetries. Accordingly, it is also shown how trivial and topological phases can be diagnosed upon comparing with a generally designated set of trivial atomic insulators.
Non-Hermitian topological phases bear a number of exotic properties, such as the non-Hermitian skin effect and the breakdown of conventional bulk-boundary correspondence. In this paper, we introduce an unsupervised machine learning approach to classify non-Hermitian topological phases based on diffusion maps, which are widely used in manifold learning. We find that the non-Hermitian skin effect will pose a notable obstacle, rendering the straightforward extension of unsupervised learning approaches to topological phases for Hermitian systems ineffective in clustering non-Hermitian topological phases. Through theoretical analysis and numerical simulations of two prototypical models, we show that this difficulty can be circumvented by choosing the on-site elements of the projective matrix as the input data. Our results provide a valuable guidance for future studies on learning non-Hermitian topological phases in an unsupervised fashion, both in theory and experiment.
Topological materials discovery has emerged as an important frontier in condensed matter physics. Recent theoretical approaches based on symmetry indicators and topological quantum chemistry have been used to identify thousands of candidate topological materials, yet experimental determination of materials topology often poses significant technical challenges. X-ray absorption spectroscopy (XAS) is a widely-used materials characterization technique sensitive to atoms local symmetry and chemical environment; thus, it may encode signatures of materials topology, though indirectly. In this work, we show that XAS can potentially uncover materials topology when augmented by machine learning. By labelling computed X-ray absorption near-edge structure (XANES) spectra of over 16,000 inorganic materials with their topological class, we establish a machine learning-based classifier of topology with XANES spectral inputs. Our classifier correctly predicts 81% of topological and 80% of trivial cases, and can achieve 90% and higher accuracy for materials containing certain elements. Given the simplicity of the XAS setup and its compatibility with multimodal sample environments, the proposed machine learning-empowered XAS topological indicator has the potential to discover broader categories of topological materials, such as non-cleavable compounds and amorphous materials. It can also inform a variety of field-driven phenomena in situ, such as magnetic field-driven topological phase transitions.
Images of line drawings are generally composed of primitive elements. One of the most fundamental elements to characterize images is the topology; line segments belong to a category different from closed circles, and closed circles with different winding degrees are nonequivalent. We investigate images with nontrivial winding using the unsupervised machine learning. We build an autoencoder model with a combination of convolutional and fully connected neural networks. We confirm that compressed data filtered from the trained model retain more than 90% of correct information on the topology, evidencing that image clustering from the unsupervised learning features the topology.
A number of moire graphene systems have nearly flat topological bands where electron motion is strongly correlated. Though microscopically these systems are only quasiperiodic, they can typically be treated as translation invariant to an excellent approximation. Here we reconsider this question for magic angle twisted bilayer graphene that is nearly aligned with a hexagonal boron nitride(h-BN) substrate. We carefully study the effect of the periodic potential induced by h-BN on the low energy physics. The combination of this potential and the moire lattice produced by the twisted graphene generates a quasi-periodic term that depends on the alignment angle between h-BN and the moire graphene. We find that the alignment angle has a significant impact on both the band gap near charge neutrality and the behavior of electrical transport. We also introduce and study toy models to illustrate how a quasi-periodic potential can give rise to localization and change in transport properties of topological bands.
We extend the notion of fragile topology to periodically-driven systems. We demonstrate driving-induced fragile topology in two different models, namely, the Floquet honeycomb model and the Floquet $pi$-flux square-lattice model. In both cases, we discover a rich phase diagram that includes Floquet fragile topological phases protected by crystalline rotation or mirror symmetries, Floquet Chern insulators, and trivial atomic phases, with distinct boundary features. Remarkably, the transitions between different phases can be feasibly achieved by simply tuning the driving amplitudes, which is a unique feature of driving-enabled topological phenomena. Moreover, corner-localized fractional charges are identified as a ``smoking-gun signal of fragile topology in our systems. Our work paves the way for studying and realizing fragile topology in Floquet systems.