Do you want to publish a course? Click here

Stein Variational Inference for Discrete Distributions

187   0   0.0 ( 0 )
 Added by Jun Han Mr
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Gradient-based approximate inference methods, such as Stein variational gradient descent (SVGD), provide simple and general-purpose inference engines for differentiable continuous distributions. However, existing forms of SVGD cannot be directly applied to discrete distributions. In this work, we fill this gap by proposing a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions, on which the gradient-free SVGD is applied to perform efficient approximate inference. The empirical results show that our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo on various challenging benchmarks of discrete graphical models. We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN), outperforming other widely used ensemble methods on learning binarized AlexNet on CIFAR-10 dataset. In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions. Our proposed method outperforms existing GOF test methods for intractable discrete distributions.



rate research

Read More

Approximating complex probability densities is a core problem in modern statistics. In this paper, we introduce the concept of Variational Inference (VI), a popular method in machine learning that uses optimization techniques to estimate complex probability densities. This property allows VI to converge faster than classical methods, such as, Markov Chain Monte Carlo sampling. Conceptually, VI works by choosing a family of probability density functions and then finding the one closest to the actual probability density -- often using the Kullback-Leibler (KL) divergence as the optimization metric. We introduce the Evidence Lower Bound to tractably compute the approximated probability density and we review the ideas behind mean-field variational inference. Finally, we discuss the applications of VI to variational auto-encoders (VAE) and VAE-Generative Adversarial Network (VAE-GAN). With this paper, we aim to explain the concept of VI and assist in future research with this approach.
Despite the recent success in probabilistic modeling and their applications, generative models trained using traditional inference techniques struggle to adapt to new distributions, even when the target distribution may be closely related to the ones seen during training. In this work, we present a doubly-amortized variational inference procedure as a way to address this challenge. By sharing computation across not only a set of query inputs, but also a set of different, related probabilistic models, we learn transferable latent representations that generalize across several related distributions. In particular, given a set of distributions over images, we find the learned representations to transfer to different data transformations. We empirically demonstrate the effectiveness of our method by introducing the MetaVAE, and show that it significantly outperforms baselines on downstream image classification tasks on MNIST (10-50%) and NORB (10-35%).
Learning the causal structure that underlies data is a crucial step towards robust real-world decision making. The majority of existing work in causal inference focuses on determining a single directed acyclic graph (DAG) or a Markov equivalence class thereof. However, a crucial aspect to acting intelligently upon the knowledge about causal structure which has been inferred from finite data demands reasoning about its uncertainty. For instance, planning interventions to find out more about the causal mechanisms that govern our data requires quantifying epistemic uncertainty over DAGs. While Bayesian causal inference allows to do so, the posterior over DAGs becomes intractable even for a small number of variables. Aiming to overcome this issue, we propose a form of variational inference over the graphs of Structural Causal Models (SCMs). To this end, we introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs. Its number of parameters does not grow exponentially with the number of variables and can be tractably learned by maximising an Evidence Lower Bound (ELBO). In our experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
Model predictive control (MPC) schemes have a proven track record for delivering aggressive and robust performance in many challenging control tasks, coping with nonlinear system dynamics, constraints, and observational noise. Despite their success, these methods often rely on simple control distributions, which can limit their performance in highly uncertain and complex environments. MPC frameworks must be able to accommodate changing distributions over system parameters, based on the most recent measurements. In this paper, we devise an implicit variational inference algorithm able to estimate distributions over model parameters and control inputs on-the-fly. The method incorporates Stein Variational gradient descent to approximate the target distributions as a collection of particles, and performs updates based on a Bayesian formulation. This enables the approximation of complex multi-modal posterior distributions, typically occurring in challenging and realistic robot navigation tasks. We demonstrate our approach on both simulated and real-world experiments requiring real-time execution in the face of dynamically changing environments.
A plethora of problems in AI, engineering and the sciences are naturally formalized as inference in discrete probabilistic models. Exact inference is often prohibitively expensive, as it may require evaluating the (unnormalized) target density on its entire domain. Here we consider the setting where only a limited budget of calls to the unnormalized density oracle is available, raising the challenge of where in the domain to allocate these function calls in order to construct a good approximate solution. We formulate this problem as an instance of sequential decision-making under uncertainty and leverage methods from reinforcement learning for probabilistic inference with budget constraints. In particular, we propose the TreeSample algorithm, an adaptation of Monte Carlo Tree Search to approximate inference. This algorithm caches all previous queries to the density oracle in an explicit search tree, and dynamically allocates new queries based on a best-first heuristic for exploration, using existing upper confidence bound methods. Our non-parametric inference method can be effectively combined with neural networks that compile approximate conditionals of the target, which are then used to guide the inference search and enable generalization across multiple target distributions. We show empirically that TreeSample outperforms standard approximate inference methods on synthetic factor graphs.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا