No Arabic abstract
Learning the causal structure that underlies data is a crucial step towards robust real-world decision making. The majority of existing work in causal inference focuses on determining a single directed acyclic graph (DAG) or a Markov equivalence class thereof. However, a crucial aspect to acting intelligently upon the knowledge about causal structure which has been inferred from finite data demands reasoning about its uncertainty. For instance, planning interventions to find out more about the causal mechanisms that govern our data requires quantifying epistemic uncertainty over DAGs. While Bayesian causal inference allows to do so, the posterior over DAGs becomes intractable even for a small number of variables. Aiming to overcome this issue, we propose a form of variational inference over the graphs of Structural Causal Models (SCMs). To this end, we introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs. Its number of parameters does not grow exponentially with the number of variables and can be tractably learned by maximising an Evidence Lower Bound (ELBO). In our experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
Constraint-based causal discovery from limited data is a notoriously difficult challenge due to the many borderline independence test decisions. Several approaches to improve the reliability of the predictions by exploiting redundancy in the independence information have been proposed recently. Though promising, existing approaches can still be greatly improved in terms of accuracy and scalability. We present a novel method that reduces the combinatorial explosion of the search space by using a more coarse-grained representation of causal information, drastically reducing computation time. Additionally, we propose a method to score causal predictions based on their confidence. Crucially, our implementation also allows one to easily combine observational and interventional data and to incorporate various types of available background knowledge. We prove soundness and asymptotic consistency of our method and demonstrate that it can outperform the state-of-the-art on synthetic data, achieving a speedup of several orders of magnitude. We illustrate its practical feasibility by applying it on a challenging protein data set.
Classical causal and statistical inference methods typically assume the observed data consists of independent realizations. However, in many applications this assumption is inappropriate due to a network of dependences between units in the data. Methods for estimating causal effects have been developed in the setting where the structure of dependence between units is known exactly, but in practice there is often substantial uncertainty about the precise network structure. This is true, for example, in trial data drawn from vulnerable communities where social ties are difficult to query directly. In this paper we combine techniques from the structure learning and interference literatures in causal inference, proposing a general method for estimating causal effects under data dependence when the structure of this dependence is not known a priori. We demonstrate the utility of our method on synthetic datasets which exhibit network dependence.
Data scarcity is a tremendous challenge in causal effect estimation. In this paper, we propose to exploit additional data sources to facilitate estimating causal effects in the target population. Specifically, we leverage additional source datasets which share similar causal mechanisms with the target observations to help infer causal effects of the target population. We propose three levels of knowledge transfer, through modelling the outcomes, treatments, and confounders. To achieve consistent positive transfer, we introduce learnable parametric transfer factors to adaptively control the transfer strength, and thus achieving a fair and balanced knowledge transfer between the sources and the target. The proposed method can infer causal effects in the target population without prior knowledge of data discrepancy between the additional data sources and the target. Experiments on both synthetic and real-world datasets show the effectiveness of the proposed method as compared with recent baselines.
Does adding a theorem to a paper affect its chance of acceptance? Does labeling a post with the authors gender affect the post popularity? This paper develops a method to estimate such causal effects from observational text data, adjusting for confounding features of the text such as the subject or writing quality. We assume that the text suffices for causal adjustment but that, in practice, it is prohibitively high-dimensional. To address this challenge, we develop causally sufficient embeddings, low-dimensional document representations that preserve sufficient information for causal identification and allow for efficient estimation of causal effects. Causally sufficient embeddings combine two ideas. The first is supervised dimensionality reduction: causal adjustment requires only the aspects of text that are predictive of both the treatment and outcome. The second is efficient language modeling: representations of text are designed to dispose of linguistically irrelevant information, and this information is also causally irrelevant. Our method adapts language models (specifically, word embeddings and topic models) to learn document embeddings that are able to predict both treatment and outcome. We study causally sufficient embeddings with semi-synthetic datasets and find that they improve causal estimation over related embedding methods. We illustrate the methods by answering the two motivating questions---the effect of a theorem on paper acceptance and the effect of a gender label on post popularity. Code and data available at https://github.com/vveitch/causal-text-embeddings-tf2}{github.com/vveitch/causal-text-embeddings-tf2
Heterogeneity in medical data, e.g., from data collected at different sites and with different protocols in a clinical study, is a fundamental hurdle for accurate prediction using machine learning models, as such models often fail to generalize well. This paper leverages a recently proposed normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM), in order to achieve harmonization of such data. A causal model is used to model observed effects (brain magnetic resonance imaging data) that result from known confounders (site, gender and age) and exogenous noise variables. Our formulation exploits the bijection induced by flow for the purpose of harmonization. We infer the posterior of exogenous variables, intervene on observations, and draw samples from the resultant SCM to obtain counterfactuals. This approach is evaluated extensively on multiple, large, real-world medical datasets and displayed better cross-domain generalization compared to state-of-the-art algorithms. Further experiments that evaluate the quality of confounder-independent data generated by our model using regression and classification tasks are provided.