Do you want to publish a course? Click here

An integral arising from dyadic average of Riesz transforms

125   0   0.0 ( 0 )
 Added by Chun-Yen Shen
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In the work of S. Petermichl, S. Treil and A. Volberg it was explicitly constructed that the Riesz transforms in any dimension $n geq 2$ can be obtained as an average of dyadic Haar shifts provided that an integral is nonzero. It was shown in the paper that when $n=2$, the integral is indeed nonzero (negative) but for $n geq 3$ the nonzero property remains unsolved. In this paper we show that the integral is nonzero (negative) for $n=3$. The novelty in our proof is the delicate decompositions of the integral for which we can either find their closed forms or prove an upper bound.



rate research

Read More

The Riesz transform is a natural multi-dimensional extension of the Hilbert transform, and it has been the object of study for many years due to its nice mathematical properties. More recently, the Riesz transform and its variants have been used to construct complex wavelets and steerable wavelet frames in higher dimensions. The flip side of this approach, however, is that the Riesz transform of a wavelet often has slow decay. One can nevertheless overcome this problem by requiring the original wavelet to have sufficient smoothness, decay, and vanishing moments. In this paper, we derive necessary conditions in terms of these three properties that guarantee the decay of the Riesz transform and its variants, and as an application, we show how the decay of the popular Simoncelli wavelets can be improved by appropriately modifying their Fourier transforms. By applying the Riesz transform to these new wavelets, we obtain steerable frames with rapid decay.
In this paper we investigate Lp-boundedness properties for the higher order Riesz transforms associated with Laguerre operators. Also we prove that the k-th Riesz transform is a principal value singular integral operator (modulus a constant times of the function when k is even). To establish our results we exploit a new identity connecting Riesz transforms in the Hermite and Laguerre settings.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying that there exists a constant $p_0in(0,p_-)$, where $p_-:=mathop{mathrm {ess,inf}}_{xin mathbb R^n}p(x)$, such that the Hardy-Littlewood maximal operator is bounded on the variable exponent Lebesgue space $L^{p(cdot)/p_0}(mathbb R^n)$. In this article, via investigating relations between boundary valued of harmonic functions on the upper half space and elements of variable exponent Hardy spaces $H^{p(cdot)}(mathbb R^n)$ introduced by E. Nakai and Y. Sawano and, independently, by D. Cruz-Uribe and L.-A. D. Wang, the authors characterize $H^{p(cdot)}(mathbb R^n)$ via the first order Riesz transforms when $p_-in (frac{n-1}n,infty)$, and via compositions of all the first order Riesz transforms when $p_-in(0,frac{n-1}n)$.
In this paper we consider $L^p$ boundedness of some commutators of Riesz transforms associated to Schr{o}dinger operator $P=-Delta+V(x)$ on $mathbb{R}^n, ngeq 3$. We assume that $V(x)$ is non-zero, nonnegative, and belongs to $B_q$ for some $q geq n/2$. Let $T_1=(-Delta+V)^{-1}V, T_2=(-Delta+V)^{-1/2}V^{1/2}$ and $T_3=(-Delta+V)^{-1/2} abla$. We obtain that $[b,T_j] (j=1,2,3)$ are bounded operators on $L^p(mathbb{R}^n)$ when $p$ ranges in a interval, where $b in mathbf{BMO}(mathbb{R}^n)$. Note that the kernel of $T_j (j=1,2,3)$ has no smoothness.
In this paper we show how to compute the $Lambda_{alpha}$ norm, $alphage 0$, using the dyadic grid. This result is a consequence of the description of the Hardy spaces $H^p(R^N)$ in terms of dyadic and special atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا