Do you want to publish a course? Click here

Scaling up Hybrid Probabilistic Inference with Logical and Arithmetic Constraints via Message Passing

102   0   0.0 ( 0 )
 Added by Zhe Zeng Miss
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Weighted model integration (WMI) is a very appealing framework for probabilistic inference: it allows to express the complex dependencies of real-world problems where variables are both continuous and discrete, via the language of Satisfiability Modulo Theories (SMT), as well as to compute probabilistic queries with complex logical and arithmetic constraints. Yet, existing WMI solvers are not ready to scale to these problems. They either ignore the intrinsic dependency structure of the problem at all, or they are limited to too restrictive structures. To narrow this gap, we derive a factorized formalism of WMI enabling us to devise a scalable WMI solver based on message passing, MP-WMI. Namely, MP-WMI is the first WMI solver which allows to: 1) perform exact inference on the full class of tree-structured WMI problems; 2) compute all marginal densities in linear time; 3) amortize inference inter query. Experimental results show that our solver dramatically outperforms the existing WMI solvers on a large set of benchmarks.



rate research

Read More

Weighted model integration (WMI) is a very appealing framework for probabilistic inference: it allows to express the complex dependencies of real-world hybrid scenarios where variables are heterogeneous in nature (both continuous and discrete) via the language of Satisfiability Modulo Theories (SMT); as well as computing probabilistic queries with arbitrarily complex logical constraints. Recent work has shown WMI inference to be reducible to a model integration (MI) problem, under some assumptions, thus effectively allowing hybrid probabilistic reasoning by volume computations. In this paper, we introduce a novel formulation of MI via a message passing scheme that allows to efficiently compute the marginal densities and statistical moments of all the variables in linear time. As such, we are able to amortize inference for arbitrarily rich MI queries when they conform to the problem structure, here represented as the primal graph associated to the SMT formula. Furthermore, we theoretically trace the tractability boundaries of exact MI. Indeed, we prove that in terms of the structural requirements on the primal graph that make our MI algorithm tractable - bounding its diameter and treewidth - the bounds are not only sufficient, but necessary for tractable inference via MI.
In sketched clustering, a dataset of $T$ samples is first sketched down to a vector of modest size, from which the centroids are subsequently extracted. Advantages include i) reduced storage complexity and ii) centroid extraction complexity independent of $T$. For the sketching methodology recently proposed by Keriven, et al., which can be interpreted as a random sampling of the empirical characteristic function, we propose a sketched clustering algorithm based on approximate message passing. Numerical experiments suggest that our approach is more efficient than the state-of-the-art sketched clustering algorithm CL-OMPR (in both computational and sample complexity) and more efficient than k-means++ when $T$ is large.
187 - Tamir Hazan , Amnon Shashua 2009
In this paper we treat both forms of probabilistic inference, estimating marginal probabilities of the joint distribution and finding the most probable assignment, through a unified message-passing algorithm architecture. We generalize the Belief Propagation (BP) algorithms of sum-product and max-product and tree-rewaighted (TRW) sum and max product algorithms (TRBP) and introduce a new set of convergent algorithms based on convex-free-energy and Linear-Programming (LP) relaxation as a zero-temprature of a convex-free-energy. The main idea of this work arises from taking a general perspective on the existing BP and TRBP algorithms while observing that they all are reductions from the basic optimization formula of $f + sum_i h_i$ where the function $f$ is an extended-valued, strictly convex but non-smooth and the functions $h_i$ are extended-valued functions (not necessarily convex). We use tools from convex duality to present the primal-dual ascent algorithm which is an extension of the Bregman successive projection scheme and is designed to handle optimization of the general type $f + sum_i h_i$. Mapping the fractional-free-energy variational principle to this framework introduces the norm-product message-passing. Special cases include sum-product and max-product (BP algorithms) and the TRBP algorithms. When the fractional-free-energy is set to be convex (convex-free-energy) the norm-product is globally convergent for estimating of marginal probabilities and for approximating the LP-relaxation. We also introduce another branch of the norm-product, the convex-max-product. The convex-max-product is convergent (unlike max-product) and aims at solving the LP-relaxation.
The principal submatrix localization problem deals with recovering a $Ktimes K$ principal submatrix of elevated mean $mu$ in a large $ntimes n$ symmetric matrix subject to additive standard Gaussian noise. This problem serves as a prototypical example for community detection, in which the community corresponds to the support of the submatrix. The main result of this paper is that in the regime $Omega(sqrt{n}) leq K leq o(n)$, the support of the submatrix can be weakly recovered (with $o(K)$ misclassification errors on average) by an optimized message passing algorithm if $lambda = mu^2K^2/n$, the signal-to-noise ratio, exceeds $1/e$. This extends a result by Deshpande and Montanari previously obtained for $K=Theta(sqrt{n}).$ In addition, the algorithm can be extended to provide exact recovery whenever information-theoretically possible and achieve the information limit of exact recovery as long as $K geq frac{n}{log n} (frac{1}{8e} + o(1))$. The total running time of the algorithm is $O(n^2log n)$. Another version of the submatrix localization problem, known as noisy biclustering, aims to recover a $K_1times K_2$ submatrix of elevated mean $mu$ in a large $n_1times n_2$ Gaussian matrix. The optimized message passing algorithm and its analysis are adapted to the bicluster problem assuming $Omega(sqrt{n_i}) leq K_i leq o(n_i)$ and $K_1asymp K_2.$ A sharp information-theoretic condition for the weak recovery of both clusters is also identified.
Maximum A Posteriori inference in graphical models is often solved via message-passing algorithms, such as the junction-tree algorithm, or loopy belief-propagation. The exact solution to this problem is well known to be exponential in the size of the models maximal cliques after it is triangulated, while approximate inference is typically exponential in the size of the models factors. In this paper, we take advantage of the fact that many models have maximal cliques that are larger than their constituent factors, and also of the fact that many factors consist entirely of latent variables (i.e., they do not depend on an observation). This is a common case in a wide variety of applications, including grids, trees, and ring-structured models. In such cases, we are able to decrease the exponent of complexity for message-passing by 0.5 for both exact and approximate inference.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا