Do you want to publish a course? Click here

New Rank Records For Elliptic Curves Having Rational Torsion

106   0   0.0 ( 0 )
 Added by Zev Klagsbrun
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We present rank-record breaking elliptic curves having torsion subgroups Z/2Z, Z/3Z, Z/4Z, Z/6Z, and Z/7Z.



rate research

Read More

In this paper, we explicitly classify the minimal discriminants of all elliptic curves $E/mathbb{Q}$ with a non-trivial torsion subgroup. This is done by considering various parameterized families of elliptic curves with the property that they parameterize all elliptic curves $E/mathbb{Q}$ with a non-trivial torsion point. We follow this by giving admissible change of variables, which give a global minimal model for $E$. We also provide necessary and sufficient conditions on the parameters of these families to determine the primes at which $E$ has additive reduction. In addition, we use these parameterized families to give constructive proofs of special cases of results due to Frey and Flexor-Oesterl{e} pertaining to the primes at which an elliptic curve over a number field $K$ with a non-trivial $K$-torsion point can have additive reduction.
By Mazurs Torsion Theorem, there are fourteen possibilities for the non-trivial torsion subgroup $T$ of a rational elliptic curve. For each $T$, we consider a parameterized family $E_T$ of elliptic curves with the property that they parameterize all elliptic curves $E/mathbb{Q}$ which contain $T$ in their torsion subgroup. Using these parameterized families, we explicitly classify the N{e}ron type, the conductor exponent, and the local Tamagawa number at each prime $p$ where $E/mathbb{Q}$ has additive reduction. As a consequence, we find all rational elliptic curves with a $2$-torsion or a $3$-torsion point that have global Tamagawa number~$1$.
144 - Tyler Genao 2021
A family $mathcal{F}$ of elliptic curves defined over number fields is said to be typically bounded in torsion if the torsion subgroups $E(F)[$tors$]$ of those elliptic curves $E_{/F}in mathcal{F}$ can be made uniformly bounded after removing from $mathcal{F}$ those whose number field degrees lie in a subset of $mathbb{Z}^+$ with arbitrarily small upper density. For every number field $F$, we prove unconditionally that the family $mathcal{E}_F$ of elliptic curves over number fields with $F$-rational $j$-invariants is typically bounded in torsion. For any integer $dinmathbb{Z}^+$, we also strengthen a result on typically bounding torsion for the family $mathcal{E}_d$ of elliptic curves over number fields with degree $d$ $j$-invariants.
An elliptic curve $E$ over $mathbb{Q}$ is said to be good if $N_{E}^{6}<max!left{ leftvert c_{4}^{3}rightvert ,c_{6}^{2}right} $ where $N_{E}$ is the conductor of $E$ and $c_{4}$ and $c_{6}$ are the invariants associated to a global minimal model of $E$. In this article, we generalize Massers Theorem on the existence of infinitely many good elliptic curves with full $2$-torsion. Specifically, we prove via constructive methods that for each of the fifteen torsion subgroups $T$ allowed by Mazurs Torsion Theorem, there are infinitely many good elliptic curves $E$ with $E!left(mathbb{Q}right) _{text{tors}}cong T$.
In this paper, $p$ and $q$ are two different odd primes. First, We construct the congruent elliptic curves corresponding to $p$, $2p$, $pq$, and $2pq,$ then, in the cases of congruent numbers, we determine the rank of the corresponding congruent elliptic curves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا