Do you want to publish a course? Click here

Resource Management Techniques for Cloud-Based IoT Environment

145   0   0.0 ( 0 )
 Added by Mansaf Alam Dr
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Internet of Things (IoT) is an Internet-based environment of connected devices and applications. IoT creates an environment where physical devices and sensors are flawlessly combined into information nodes to deliver innovative and smart services for human-being to make their life easier and more efficient. The main objective of the IoT devices-network is to generate data, which are converted into useful information by the data analysis process, it also provides useful resources to the end users. IoT resource management is a key challenge to ensure the quality of end user experience. Many IoT smart devices and technologies like sensors, actuators, RFID, UMTS, 3G, and GSM etc. are used to develop IoT networks. Cloud Computing plays an important role in these networks deployment by providing physical resources as virtualized resources consist of memory, computation power, network bandwidth, virtualized system and device drivers in secure and pay as per use basis. One of the major concerns of Cloud-based IoT environment is resource management, which ensures efficient resource utilization, load balancing, reduce SLA violation, and improve the system performance by reducing operational cost and energy consumption. Many researchers have been proposed IoT based resource management techniques. The focus of this paper is to investigate these proposed resource allocation techniques and finds which parameters must be considered for improvement in resource allocation for IoT networks. Further, this paper also uncovered challenges and issues of Cloud-based resource allocation for IoT environment.



rate research

Read More

Crowdsourced live video streaming (livecast) services such as Facebook Live, YouNow, Douyu and Twitch are gaining more momentum recently. Allocating the limited resources in a cost-effective manner while maximizing the Quality of Service (QoS) through real-time delivery and the provision of the appropriate representations for all viewers is a challenging problem. In our paper, we introduce a machine-learning based predictive resource allocation framework for geo-distributed cloud sites, considering the delay and quality constraints to guarantee the maximum QoS for viewers and the minimum cost for content providers. First, we present an offline optimization that decides the required transcoding resources in distributed regions near the viewers with a trade-off between the QoS and the overall cost. Second, we use machine learning to build forecasting models that proactively predict the approximate transcoding resources to be reserved at each cloud site ahead of time. Finally, we develop a Greedy Nearest and Cheapest algorithm (GNCA) to perform the resource allocation of real-time broadcasted videos on the rented resources. Extensive simulations have shown that GNCA outperforms the state-of-the art resource allocation approaches for crowdsourced live streaming by achieving more than 20% gain in terms of system cost while serving the viewers with relatively lower latency.
Edge computing is an emerging solution to support the future Internet of Things (IoT) applications that are delay-sensitive, processing-intensive or that require closer intelligence. Machine intelligence and data-driven approaches are envisioned to build future Edge-IoT systems that satisfy IoT devices demands for edge resources. However, significant challenges and technical barriers exist which complicate the resource management for such Edge-IoT systems. IoT devices running various applications can demonstrate a wide range of behaviors in the devices resource demand that are extremely difficult to manage. In addition, the management of multidimensional resources fairly and efficiently by the edge in such a setting is a challenging task. In this paper, we develop a novel data-driven resource management framework named BEHAVE that intelligently and fairly allocates edge resources to heterogeneous IoT devices with consideration of their behavior of resource demand (BRD). BEHAVE aims to holistically address the management technical barriers by: 1) building an efficient scheme for modeling and assessment of the BRD of IoT devices based on their resource requests and resource usage; 2) expanding a new Rational, Fair, and Truthful Resource Allocation (RFTA) model that binds the devices BRD and resource allocation to achieve fair allocation and encourage truthfulness in resource demand; and 3) developing an enhanced deep reinforcement learning (EDRL) scheme to achieve the RFTA goals. The evaluation results demonstrate BEHAVEs capability to analyze the IoT devices BRD and adjust its resource management policy accordingly.
Leveraging the potential power of even small handheld devices able to communicate wirelessly requires dedicated support. In particular, collaborative applications need sophisticated assistance in terms of querying and exchanging different kinds of data. Using a concrete example from the domain of mobile learning, the general need for information dissemination is motivated. Subsequently, and driven by infrastructural conditions, realization strategies of an appropriate middleware service are discussed.
The overall performance of the development of computing systems has been engrossed on enhancing demand from the client and enterprise domains. but, the intake of ever-increasing energy for computing systems has commenced to bound in increasing overall performance due to heavy electric payments and carbon dioxide emission. The growth in power consumption of server is increased continuously, and many researchers proposed, if this pattern repeats continuously, then the power consumption cost of a server over its lifespan would be higher than its hardware prices. The power intake troubles more for clusters, grids, and clouds, which encompass numerous thousand heterogeneous servers. Continuous efforts have been done to reduce the electricity intake of these massive-scale infrastructures. To identify the challenges and required future enhancements in the field of efficient energy consumption in Cloud Computing, it is necessary to synthesize and categorize the research and development done so far. In this paper, the authors discuss the reasons and problems associated with huge energy consumption by Cloud data centres and prepare a taxonomy of huge energy consumption problems and its related solutions. The authors cover all aspects of energy consumption by Cloud data centers and analyze many research papers to find the better solution for efficient energy consumption. This work gives an overall information regarding energy-consumption problems of Cloud data centres and energy-efficient solutions for this problem. The paper is concluded with a conversation of future enhancement and development in energy-efficient methods in Cloud Computing
97 - Haixia Peng , Xuemin Shen 2020
In this paper, we investigate joint vehicle association and multi-dimensional resource management in a vehicular network assisted by multi-access edge computing (MEC) and unmanned aerial vehicle (UAV). To efficiently manage the available spectrum, computing, and caching resources for the MEC-mounted base station and UAVs, a resource optimization problem is formulated and carried out at a central controller. Considering the overlong solving time of the formulated problem and the sensitive delay requirements of vehicular applications, we transform the optimization problem using reinforcement learning and then design a deep deterministic policy gradient (DDPG)-based solution. Through training the DDPG-based resource management model offline, optimal vehicle association and resource allocation decisions can be obtained rapidly. Simulation results demonstrate that the DDPG-based resource management scheme can converge within 200 episodes and achieve higher delay/quality-of-service satisfaction ratios than the random scheme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا