Do you want to publish a course? Click here

Unstable oscillations and bistability in delay-coupled swarms

82   0   0.0 ( 0 )
 Added by Jason Hindes
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is known from both theory and experiments that introducing time delays into the communication network of mobile-agent swarms produces coherent rotational patterns. Often such spatio-temporal rotations can be bistable with other swarming patterns, such as milling and flocking. Yet, most known bifurcation results related to delay-coupled swarms rely on inaccurate mean-field techniques. As a consequence, the utility of applying macroscopic theory as a guide for predicting and controlling swarms of mobile robots has been limited. To overcome this limitation, we perform an exact stability analysis of two primary swarming patterns in a general model with time-delayed interactions. By correctly identifying the relevant spatio-temporal modes that determine stability in the presence of time delay, we are able to accurately predict bistability and unstable oscillations in large swarm simulations-- laying the groundwork for comparisons to robotics experiments.



rate research

Read More

A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce the delay system to a non-delayed Langevin equation, which allows us to analytically compute the distribution of frequencies, and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators.
We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has been found to be a crucial control parameter. By proper choice of this parameter one can switch between different synchronous oscillatory states of the network. Applying the speed-gradient method, we derive an adaptive algorithm for an automatic adjustment of the coupling phase such that a desired state can be selected from an otherwise multistable regime. We propose goal functions based on both the difference of the oscillators and a generalized order parameter and demonstrate that the speed-gradient method allows one to find appropriate coupling phases with which different states of synchronization, e.g., in-phase oscillation, splay or various cluster states, can be selected.
In some physical and biological swarms, agents effectively move and interact along curved surfaces. The associated constraints and symmetries can affect collective-motion patterns, but little is known about pattern stability in the presence of surface curvature. To make progress, we construct a general model for self-propelled swarms moving on surfaces using Lagrangian mechanics. We find that the combination of self-propulsion, friction, mutual attraction, and surface curvature produce milling patterns where each agent in a swarm oscillates on a limit cycle, with different agents splayed along the cycle such that the swarms center-of-mass remains stationary. In general, such patterns loose stability when mutual attraction is insufficient to overcome the constraint of curvature, and we uncover two broad classes of stationary milling-state bifurcations. In the first, a spatially periodic mode undergoes a Hopf bifurcation as curvature is increased which results in unstable spatiotemporal oscillations. This generic bifurcation is analyzed for the sphere and demonstrated numerically for several surfaces. In the second, a saddle-node-of-periodic-orbits occurs in which stable and unstable milling states collide and annihilate. The latter is analyzed for milling states on cylindrical surfaces. Our results contribute to the general understanding of swarm pattern-formation and stability in the presence of surface curvature, and may aid in designing robotic swarms that can be controlled to move over complex surfaces.
Weakly coupled limit cycle oscillators can be reduced into a phase model using phase reduction approach, and the phase model itself is helpful to analyze a synchronization. For example, phase model of two oscillators is one-dimensional differential equation for the evolution of a phase difference, and an existence of fixed points determines frequency-locking solutions. By treating each oscillator as a black-box possessing a single-input single-output one can investigate various control algorithms to change the synchronization of the oscillators. In particular, we are interested in a delayed feedback control algorithm, which applied to oscillator after the phase reduction gives the same phase model as of the control-free case, yet a coupling strength is rescaled. The conventional delayed feedback control is limited to change a magnitude but not a sign of the coupling strength. In this work we present modification of the delayed feedback algorithm supplemented by an additional unstable degree of freedom, which is able to change the sign of the coupling strength. Various numerical calculations performed with Landau-Stuart and FitzHugh-Nagumo oscillators show successful switching between an in-phase and an anti-phase synchronization using provided control algorithm. Additionally we show that the control force becomes non-invasive if our objective is a stabilization of an unstable phase difference for two coupled oscillators.
The stable operation of the electric power grid relies on a precisely synchronized state of all generators and machines. All machines rotate at exactly the same frequency with fixed phase differences, leading to steady power flows throughout the grid. Whether such a steady state exists for a given network is of eminent practical importance. The loss of a steady state typically leads to power outages up to a complete blackout. But also the existence of multiple steady states is undesirable, as it can lead to sudden transitions, circulating flows and eventually also to power outages. Steady states are typically calculated numerically, but this approach gives only limited insight into the existence and (non-)uniqueness of steady states. Analytic results are available only for special network configuration, in particular for grids with negligible Ohmic losses or radial networks without any loops. In this article, we introduce a method to systematically construct the solutions of the real power load-flow equations in the presence of Ohmic losses. We calculate the steady states explicitly for elementary networks demonstrating different mechanisms leading to multistability. Our results also apply to models of coupled oscillators which are widely used in theoretical physics and mathematical biology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا