Do you want to publish a course? Click here

Evidence for Cosmic Acceleration is Robust to Observed Correlations Between Type Ia Supernova Luminosity and Stellar Age

62   0   0.0 ( 0 )
 Added by Benjamin Rose
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Type Ia Supernovae (SNe Ia) are powerful standardizable candles for constraining cosmological models and provided the first evidence of the accelerated expansion of the universe. Their precision derives from empirical correlations, now measured from $>1000$ SNe Ia, between their luminosities, light-curve shapes, colors and most recently with the stellar mass of their host galaxy. As mass correlates with other galaxy properties, alternative parameters have been investigated to improve SN Ia standardization though none have been shown to significantly alter the determination of cosmological parameters. We re-examine a recent claim, based on 34 SN Ia in nearby passive host galaxies, of a 0.05 mag/Gyr dependence of standardized SN Ia luminosity on host age which if extrapolated to higher redshifts, would be a bias up to 0.25 mag, challenging the inference of dark energy. We reanalyze this sample of hosts using both the original method and a Bayesian hierarchical model and find after a fuller accounting of the uncertainties the significance of a dependence on age to be $leq2sigma$ and $sim1sigma$ after the removal of a single poorly-sampled SN Ia. To test the claim that a trend seen in old stellar populations can be applied to younger ages, we extend our analysis to a larger sample which includes young hosts. We find the residual dependence of host age (after all standardization typically employed for cosmological measurements) to be consistent with zero for 254 SNe Ia from the Pantheon sample, ruling out the large but low significance trend seen in passive hosts.



rate research

Read More

The standard model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present --- as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these standardisable candles indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.
103 - Isaac Tutusaus , Brahim Lamine , 2018
The $Lambda$CDM model is the current standard model in cosmology thanks to its ability to reproduce the observations. Its first observational evidence appeared from the type Ia supernovae (SNIa) Hubble diagram. However, there has been some debate in the literature concerning the statistical treatment of SNIa. In this paper we relax the standard assumption that SNIa intrinsic luminosity is independent of the redshift, and we examine whether it may have an impact on the accelerated nature of the expansion of the Universe. In order to be as general as possible, we reconstruct the expansion rate of the Universe through a cubic spline interpolation fitting observations of different probes: SNIa, baryon acoustic oscillations (BAO), and the high-redshift information from the cosmic microwave background (CMB). We show that when SNIa intrinsic luminosity is not allowed to vary as a function of the redshift, cosmic acceleration is definitely proven in a model-independent approach. However, allowing for a redshift dependence, a non-accelerated reconstruction of the expansion rate is able to fit, as well as $Lambda$CDM, the combination of SNIa and BAO data, both treating the BAO standard ruler $r_d$ as a free parameter, or adding the recently published prior from CMB observations. We further extend the analysis by including the CMB data, and we show that a non-accelerated reconstruction is able to nicely fit this combination of low and high-redshift data. In this work we present a model-independent reconstruction of a non-accelerated expansion rate of the Universe that is able to nicely fit all the main background cosmological probes. However, the predicted value of $H_0$ is in tension with recent direct measurements. Our analysis points out that a final, reliable, and consensual value for $H_0$ would be critical to definitively prove the cosmic acceleration in a model-independent way. [Abridged]
A string of recent studies has debated the exact form and physical origin of an evolutionary trend between the peak luminosity of Type Ia supernovae (SNe Ia) and the properties of the galaxies that host them. We shed new light on the discussion by presenting an analysis of ~200 low-redshift SNe Ia in which we measure the separation of Hubble residuals (HR; as probes of luminosity) between two host-galaxy morphological types. We show that this separation can test the predictions made by recently proposed models, using an independently and empirically determined distribution of each morphological type in host-property space. Our results are partially consistent with the new HR--age slope, but we find significant scatter in the predictions from different galaxy catalogues. The inconsistency in age illuminates an issue in the current debate that was not obvious in the long-discussed mass models: HR--host-property models are strongly dependent on the methods employed to determine galaxy properties. While our results demonstrate the difficulty in constructing a universal model for age as a proxy for host environment, our results indeed identify evolutionary trends between mass, age, morphology, and HR values, encouraging (or requiring, if such trends are to be accounted for in cosmological studies) further investigation.
A spectral-energy distribution (SED) model for Type Ia supernovae (SNe Ia) is a critical tool for measuring precise and accurate distances across a large redshift range and constraining cosmological parameters. We present an improved model framework, SALT3, which has several advantages over current models including the leading SALT2 model (SALT2.4). While SALT3 has a similar philosophy, it differs from SALT2 by having improved estimation of uncertainties, better separation of color and light-curve stretch, and a publicly available training code. We present the application of our training method on a cross-calibrated compilation of 1083 SNe with 1207 spectra. Our compilation is $2.5times$ larger than the SALT2 training sample and has greatly reduced calibration uncertainties. The resulting trained SALT3.K21 model has an extended wavelength range $2000$-$11000$ angstroms (1800 angstroms redder) and reduced uncertainties compared to SALT2, enabling accurate use of low-$z$ $I$ and $iz$ photometric bands. Including these previously discarded bands, SALT3.K21 reduces the Hubble scatter of the low-z Foundation and CfA3 samples by 15% and 10%, respectively. To check for potential systematic uncertainties we compare distances of low ($0.01<z<0.2$) and high ($0.4<z<0.6$) redshift SNe in the training compilation, finding an insignificant $2pm14$ mmag shift between SALT2.4 and SALT3.K21. While the SALT3.K21 model was trained on optical data, our method can be used to build a model for rest-frame NIR samples from the Roman Space Telescope. Our open-source training code, public training data, model, and documentation are available at https://saltshaker.readthedocs.io/en/latest/, and the model is integrated into the sncosmo and SNANA software packages.
We present optical and near-infrared ($ugriYJH$) photometry of host galaxies of Type Ia supernovae (SN~Ia) observed by the textit{Carnegie Supernova Project-I}. We determine host galaxy stellar masses and, for the first time, study their correlation with SN~Ia standardized luminosity across optical and near-infrared ($uBgVriYJH$) bands. In the individual bands, we find that SNe~Ia are more luminous in more massive hosts with luminosity offsets ranging between $-0.07 pm0.03$ mag to $-0.15pm0.04$ mag after light-curve standardization. The slope of the SN~Ia Hubble residual-host mass relation is negative across all $uBgVriYJH$ bands with values ranging between $-0.036pm 0.025$ mag/dex to $-0.097pm 0.027$ mag/dex -- implying that SNe~Ia in more massive galaxies are brighter than expected. The near-constant observed correlations across optical and near-infrared bands indicate that dust may not play a significant role in the observed luminosity offset--host mass correlation. We measure projected separations between SNe~Ia and their host centers, and find that SNe~Ia that explode beyond a projected 10 kpc have a $rm 30% to 50%$ reduction of the dispersion in Hubble residuals across all bands -- making them a more uniform subset of SNe~Ia. Dust in host galaxies, peculiar velocities of nearby SN~Ia, or a combination of both may drive this result as the color excesses of SNe~Ia beyond 10 kpc are found to be generally lower than those interior, but there is also a diminishing trend of the dispersion as we exclude nearby events. We do not find that SN~Ia average luminosity varies significantly when they are grouped in various host morphological types. Host galaxy data from this work will be useful, in conjunction with future high-redshift samples, in constraining cosmological parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا