No Arabic abstract
The article focuses on possible financial effects of the transformation towards Gold Open Access publishing based on article processing charges and studies an aspect that has so far been overlooked: Do possible cost sharing models lead to the same overall expenses or do they result in different financial burdens for the research institutions involved? It takes the current state of Gold OA publishing as a starting point, develops five possible models of attributing costs based on different author roles, number of authors and author-address-combinations. The analysis of the distributional effects of the application of the different models shows that all models result in similar expenditures for the overwhelming majority of institutions. Still, there are some research institutions where the difference between most and least expensive model results in a considerable amount of money. Given that the model calculation only considers publications that are Open Access and where all authors come from Germany, it is likely that different cost sharing models will become an issue in the debate on how to shoulder a possible large scale transformation towards Open Access based on publication fees.
In this article, we analyze the citations to articles published in 11 biological and medical journals from 2003 to 2007 that employ author-choice open access models. Controlling for known explanatory predictors of citations, only 2 of the 11 journals show positive and significant open access effects. Analyzing all journals together, we report a small but significant increase in article citations of 17%. In addition, there is strong evidence to suggest that the open access advantage is declining by about 7% per year, from 32% in 2004 to 11% in 2007.
Scholarly journals are increasingly using social media to share their latest research publications and communicate with their readers. Having a presence on social media gives journals a platform to raise their profile and promote their content. This study compares the number of clicks received when journals provide two types of links to subscription articles: open access (OA) and paid content links. We examine the OA effect using unique matched-pair data for the journal Nature Materials. Our study finds that OA links perform better than paid content links. In particular, when the journal does not indicate that a link to an article is an OA link, there is an obvious drop in performance against clicks on links indicating OA status. OA has a positive effect on the number of clicks in all countries, but its positive impact is slightly greater in developed countries. The results suggest that free content is more attractive to users than paid content. Social media exposure of scholarly articles promotes the use of research outputs. Combining social media dissemination with OA appears to enhance the reach of scientific information. However, extensive further efforts are needed to remove barriers to OA.
The main contributors of scientific knowledge, researchers, generally aim to disseminate their findings far and wide. And yet, publishing companies have largely kept these findings behind a paywall. With digital publication technology markedly reducing cost, this enduring wall seems disproportionate and unjustified; moreover, it has sparked a topical exchange concerning how to modernize academic publishing. This discussion, however, seems to focus on how to compensate major publishers for providing open access through a pay to publish model, in turn transferring financial burdens from libraries to authors and their funders. Large publishing companies, including Elsevier, Springer Nature, Wiley, PLoS, and Frontiers, continue to earn exorbitant revenues each year, hundreds of millions of dollars of which now come from processing charges for open-access articles. A less expensive and equally accessible alternative exists: widespread self-archiving of peer-reviewed articles. All we need is awareness of this alternative and the will to employ it
We introduce a combinatorial variant of the cost sharing problem: several services can be provided to each player and each player values every combination of services differently. A publicly known cost function specifies the cost of providing every possible combination of services. A combinatorial cost sharing mechanism is a protocol that decides which services each player gets and at what price. We look for dominant strategy mechanisms that are (economically) efficient and cover the cost, ideally without overcharging (i.e., budget balanced). Note that unlike the standard cost sharing setting, combinatorial cost sharing is a multi-parameter domain. This makes designing dominant strategy mechanisms with good guarantees a challenging task. We present the Potential Mechanism -- a combination of the VCG mechanism and a well-known tool from the theory of cooperative games: Hart and Mas-Colells potential function. The potential mechanism is a dominant strategy mechanism that always covers the incurred cost. When the cost function is subadditive the same mechanism is also approximately efficient. Our main technical contribution shows that when the cost function is submodular the potential mechanism is approximately budget balanced in three settings: supermodular valuations, symmetric cost function and general symmetric valuations, and two players with general valuations.
Open data and open-source software may be part of the solution to sciences reproducibility crisis, but they are insufficient to guarantee reproducibility. Requiring minimal end-user expertise, encapsulator creates a time capsule with reproducible code in a self-contained computational environment. encapsulator provides end-users with a fully-featured desktop environment for reproducible research.