Do you want to publish a course? Click here

The Hamilton-Jacobi characteristic equations for three dimensional Ashtekar gravity

83   0   0.0 ( 0 )
 Added by Alberto Escalante
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Hamilton-Jacobi analysis of three dimensional gravity defined in terms of Ashtekar-like variables is performed. We report a detailed analysis where the complete set of Hamilton-Jacobi constraints, the characteristic equations and the gauge transformations of the theory are found. We find from integrability conditions on the Hamilton-Jacobi Hamiltonians that the theory is reduced to a $BF$ field theory defined only in terms of self-dual (or anti-self-dual) variables; we identify the dynamical variables and the counting of physical degrees of freedom is performed. In addition, we compare our results with those reported by using the canonical formalism.



rate research

Read More

The Hamilton-Jacobi analysis for gravity without dynamics is performed. We report a detailed analysis where the complete set of Hamilton-Jacobi constraints, the characteristic equations and the gauge transformations of the theory are found. We compare our results with those reported in the literature where alternative approaches are used. In addition, we complete our work by performing the canonical covariant analysis by constructing a gauge invariant symplectic structure, and we find a full consistency between the results obtained from both approaches.
In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply this formalism to analyze the constraint structure of the linearized gravity in instant and front-form dynamics.
55 - G. W. Gibbons 2019
It is shown that Ashtekar and Hansenss Universal Structure at Spatial Infinity (SPI), which has recently be used to establish the conservation of supercharges from past null infity to future null infinity, is an example of a (pseudo-) Carollian structure. The relation to Kinematic Algebras is clarified.
115 - G. W. Gibbons 2015
It is shown that the free motion of massive particles moving in static spacetimes are given by the geodesics of an energy-dependent Riemannian metric on the spatial sections analogous to Jacobis metric in classical dynamics. In the massless limit Jacobis metric coincides with the energy independent Fermat or optical metric. For stationary metrics, it is known that the motion of massless particles is given by the geodesics of an energy independent Finslerian metric of Randers type. The motion of massive particles is governed by neither a Riemannian nor a Finslerian metric. The properies of the Jacobi metric for massive particles moving outside the horizon of a Schwarschild black hole are described. By constrast with the massless case, the Gaussian curvature of the equatorial sections is not always negative.
By using the Hamilton-Jacobi [HJ] framework the topological theories associated with Euler and Pontryagin classes are analyzed. We report the construction of a fundamental $HJ$ differential where the characteristic equations and the symmetries of the theory are identified. Moreover, we work in both theories with the same phase space variables and we show that in spite of Pontryagin and Euler classes share the same equations of motion their symmetries are different. In addition, we report all HJ Hamiltonians and we compare our results with other formulations reported in the literature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا