Do you want to publish a course? Click here

Boosting the Performance of Plug-and-Play Priors via Denoiser Scaling

231   0   0.0 ( 0 )
 Added by Ulugbek Kamilov
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Plug-and-play priors (PnP) is an image reconstruction framework that uses an image denoiser as an imaging prior. Unlike traditional regularized inversion, PnP does not require the prior to be expressible in the form of a regularization function. This flexibility enables PnP algorithms to exploit the most effective image denoisers, leading to their state-of-the-art performance in various imaging tasks. In this paper, we propose a new denoiser scaling technique to explicitly control the amount of PnP regularization. Traditionally, the performance of PnP algorithms is controlled via intrinsic parameters of the denoiser related to the noise variance. However, many powerful denoisers, such as the ones based on convolutional neural networks (CNNs), do not have tunable parameters that would allow controlling their influence within PnP. To address this issue, we introduce a scaling parameter that adjusts the magnitude of the denoiser input and output. We theoretical justify the denoiser scaling from the perspectives of proximal optimization, statistical estimation, and consensus equilibrium. Finally, we provide numerical experiments demonstrating the ability of denoiser scaling to systematically improve the performance of PnP for denoising CNN priors that do not have explicitly tunable parameters.

rate research

Read More

This paper presents a novel deformable registration framework, leveraging an image prior specified through a denoising function, for severely noise-corrupted placental images. Recent work on plug-and-play (PnP) priors has shown the state-of-the-art performance of reconstruction algorithms under such priors in a range of imaging applications. Integration of powerful image denoisers into advanced registration methods provides our model with a flexibility to accommodate datasets that have low signal-to-noise ratios (SNRs). We demonstrate the performance of our method under a wide variety of denoising models in the context of diffeomorphic image registration. Experimental results show that our model substantially improves the accuracy of spatial alignment in applications of 3D in-utero diffusion-weighted MR images (DW-MRI) that suffer from low SNR and large spatial transformations.
Cardiac magnetic resonance imaging (CMR) is a noninvasive imaging modality that provides a comprehensive evaluation of the cardiovascular system. The clinical utility of CMR is hampered by long acquisition times, however. In this work, we propose and validate a plug-and-play (PnP) method for CMR reconstruction from undersampled multi-coil data. To fully exploit the rich image structure inherent in CMR, we pair the PnP framework with a deep learning (DL)-based denoiser that is trained using spatiotemporal patches from high-quality, breath-held cardiac cine images. The resulting PnP-DL method iterates over data consistency and denoising subroutines. We compare the reconstruction performance of PnP-DL to that of compressed sensing (CS) using eight breath-held and ten real-time (RT) free-breathing cardiac cine datasets. We find that, for breath-held datasets, PnP-DL offers more than one dB advantage over commonly used CS methods. For RT free-breathing datasets, where ground truth is not available, PnP-DL receives higher scores in qualitative evaluation. The results highlight the potential of PnP-DL to accelerate RT CMR.
Deep segmentation models that generalize to images with unknown appearance are important for real-world medical image analysis. Retraining models leads to high latency and complex pipelines, which are impractical in clinical settings. The situation becomes more severe for ultrasound image analysis because of their large appearance shifts. In this paper, we propose a novel method for robust segmentation under unknown appearance shifts. Our contribution is three-fold. First, we advance a one-stage plug-and-play solution by embedding hierarchical style transfer units into a segmentation architecture. Our solution can remove appearance shifts and perform segmentation simultaneously. Second, we adopt Dynamic Instance Normalization to conduct precise and dynamic style transfer in a learnable manner, rather than previously fixed style normalization. Third, our solution is fast and lightweight for routine clinical adoption. Given 400*400 image input, our solution only needs an additional 0.2ms and 1.92M FLOPs to handle appearance shifts compared to the baseline pipeline. Extensive experiments are conducted on a large dataset from three vendors demonstrate our proposed method enhances the robustness of deep segmentation models.
Magnetic Resonance Imaging (MRI) is a noninvasive imaging technique that provides excellent soft-tissue contrast without using ionizing radiation. MRIs clinical application may be limited by long data acquisition time; therefore, MR image reconstruction from highly under-sampled k-space data has been an active research area. Calibrationless MRI not only enables a higher acceleration rate but also increases flexibility for sampling pattern design. To leverage non-linear machine learning priors, we pair our High-dimensional Fast Convolutional Framework (HICU) with a plug-in denoiser and demonstrate its feasibility using 2D brain data.
101 - Xiaojian Xu , Yu Sun , Jiaming Liu 2020
Plug-and-play priors (PnP) is a methodology for regularized image reconstruction that specifies the prior through an image denoiser. While PnP algorithms are well understood for denoisers performing maximum a posteriori probability (MAP) estimation, they have not been analyzed for the minimum mean squared error (MMSE) denoisers. This letter addresses this gap by establishing the first theoretical convergence result for the iterative shrinkage/thresholding algorithm (ISTA) variant of PnP for MMSE denoisers. We show that the iterates produced by PnP-ISTA with an MMSE denoiser converge to a stationary point of some global cost function. We validate our analysis on sparse signal recovery in compressive sensing by comparing two types of denoisers, namely the exact MMSE denoiser and the approximate MMSE denoiser obtained by training a deep neural net.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا