Do you want to publish a course? Click here

Quantum simulations of materials on near-term quantum computers

91   0   0.0 ( 0 )
 Added by He Ma
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an active region requires a higher level of theoretical accuracy than its environment. Here we present a quantum embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the way to simulations of realistic materials on near-term quantum computers.



rate research

Read More

We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational quantum eigensolver, active space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error mitigation. We demonstrate this benchmark on the 20 qubit IBM Tokyo and 16 qubit Rigetti Aspen processors via the simulation of alkali metal hydrides (NaH, KH, RbH),with accuracy of the computed ground state energy serving as the primary benchmark metric. We further parameterize this benchmark suite on the trial circuit type, the level of symmetry reduction, and error mitigation strategies. Our results demonstrate the characteristically high noise level present in near-term superconducting hardware, but provide a relevant baseline for future improvement of the underlying hardware, and a means for comparison across near-term hardware types. We also demonstrate how to reduce the noise in post processing with specific error mitigation techniques. Particularly, the adaptation of McWeeny purification of noisy density matrices dramatically improves accuracy of quantum computations, which, along with adjustable active space, significantly extends the range of accessible molecular systems. We demonstrate that for specific benchmark settings, the accuracy metric can reach chemical accuracy when computing over the cloud on certain quantum computers.
Variational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular systems. However, previous bounds on the measurement time required have suggested that the application of these techniques to larger molecules might be infeasible. We present a measurement strategy based on a low rank factorization of the two-electron integral tensor. Our approach provides a cubic reduction in term groupings over prior state-of-the-art and enables measurement times three orders of magnitude smaller than those suggested by commonly referenced bounds for the largest systems we consider. Although our technique requires execution of a linear-depth circuit prior to measurement, this is compensated for by eliminating challenges associated with sampling non-local Jordan-Wigner transformed operators in the presence of measurement error, while enabling a powerful form of error mitigation based on efficient postselection. We numerically characterize these benefits with noisy quantum circuit simulations for ground state energies of strongly correlated electronic systems.
In this work, we describe a full-stack pipeline for natural language processing on near-term quantum computers, aka QNLP. The language-modelling framework we employ is that of compositional distributional semantics (DisCoCat), which extends and complements the compositional structure of pregroup grammars. Within this model, the grammatical reduction of a sentence is interpreted as a diagram, encoding a specific interaction of words according to the grammar. It is this interaction which, together with a specific choice of word embedding, realises the meaning (or semantics) of a sentence. Building on the formal quantum-like nature of such interactions, we present a method for mapping DisCoCat diagrams to quantum circuits. Our methodology is compatible both with NISQ devices and with established Quantum Machine Learning techniques, paving the way to near-term applications of quantum technology to natural language processing.
A highly anticipated application for quantum computers is as a universal simulator of quantum many-body systems, as was conjectured by Richard Feynman in the 1980s. The last decade has witnessed the growing success of quantum computing for simulating static properties of quantum systems, i.e., the ground state energy of small molecules. However, it remains a challenge to simulate quantum many-body dynamics on current-to-near-future noisy intermediate-scale quantum computers. Here, we demonstrate successful simulation of nontrivial quantum dynamics on IBMs Q16 Melbourne quantum processor and Rigettis Aspen quantum processor; namely, ultrafast control of emergent magnetism by THz radiation in an atomically-thin two-dimensional material. The full code and step-by-step tutorials for performing such simulations are included to lower the barrier to access for future research on these two quantum computers. As such, this work lays a foundation for the promising study of a wide variety of quantum dynamics on near-future quantum computers, including dynamic localization of Floquet states and topological protection of qubits in noisy environments.
120 - He Ma , Nan Sheng , Marco Govoni 2021
Quantum embedding theories are promising approaches to investigate strongly-correlated electronic states of active regions of large-scale molecular or condensed systems. Notable examples are spin defects in semiconductors and insulators. We present a detailed derivation of a quantum embedding theory recently introduced, which is based on the definition of effective Hamiltonians. The effect of the environment on a chosen active space is accounted for through screened Coulomb interactions evaluated using density functional theory. Importantly, the random phase approximation is not required and the evaluation of virtual electronic orbitals is circumvented with algorithms previously developed in the context of calculations based on many-body perturbation theory. In addition, we generalize the quantum embedding theory to active spaces composed of orbitals that are not eigenstates of Kohn-Sham Hamiltonians. Finally, we report results for spin defects in semiconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا