Do you want to publish a course? Click here

MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models

94   0   0.0 ( 0 )
 Added by Imke Mayer
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Inferring causal effects of a treatment, intervention or policy from observational data is central to many applications. However, state-of-the-art methods for causal inference seldom consider the possibility that covariates have missing values, which is ubiquitous in many real-world analyses. Missing data greatly complicate causal inference procedures as they require an adapted unconfoundedness hypothesis which can be difficult to justify in practice. We circumvent this issue by considering latent confounders whose distribution is learned through variational autoencoders adapted to missing values. They can be used either as a pre-processing step prior to causal inference but we also suggest to embed them in a multiple imputation strategy to take into account the variability due to missing values. Numerical experiments demonstrate the effectiveness of the proposed methodology especially for non-linear models compared to competitors.



rate research

Read More

88 - Marco Scutari 2019
Bayesian networks are a versatile and powerful tool to model complex phenomena and the interplay of their components in a probabilistically principled way. Moving beyond the comparatively simple case of completely observed, static data, which has received the most attention in the literature, in this paper we will review how Bayesian networks can model dynamic data and data with incomplete observations. Such data are the norm at the forefront of research and in practical applications, and Bayesian networks are uniquely positioned to model them due to their explainability and interpretability.
How do we learn from biased data? Historical datasets often reflect historical prejudices; sensitive or protected attributes may affect the observed treatments and outcomes. Classification algorithms tasked with predicting outcomes accurately from these datasets tend to replicate these biases. We advocate a causal modeling approach to learning from biased data, exploring the relationship between fair classification and intervention. We propose a causal model in which the sensitive attribute confounds both the treatment and the outcome. Building on prior work in deep learning and generative modeling, we describe how to learn the parameters of this causal model from observational data alone, even in the presence of unobserved confounders. We show experimentally that fairness-aware causal modeling provides better estimates of the causal effects between the sensitive attribute, the treatment, and the outcome. We further present evidence that estimating these causal effects can help learn policies that are both more accurate and fair, when presented with a historically biased dataset.
Deep latent variable models (DLVMs) combine the approximation abilities of deep neural networks and the statistical foundations of generative models. Variational methods are commonly used for inference; however, the exact likelihood of these models has been largely overlooked. The purpose of this work is to study the general properties of this quantity and to show how they can be leveraged in practice. We focus on important inferential problems that rely on the likelihood: estimation and missing data imputation. First, we investigate maximum likelihood estimation for DLVMs: in particular, we show that most unconstrained models used for continuous data have an unbounded likelihood function. This problematic behaviour is demonstrated to be a source of mode collapse. We also show how to ensure the existence of maximum likelihood estimates, and draw useful connections with nonparametric mixture models. Finally, we describe an algorithm for missing data imputation using the exact conditional likelihood of a deep latent variable model. On several data sets, our algorithm consistently and significantly outperforms the usual imputation scheme used for DLVMs.
82 - Eric Dunipace 2021
Weighting methods are a common tool to de-bias estimates of causal effects. And though there are an increasing number of seemingly disparate methods, many of them can be folded into one unifying regime: causal optimal transport. This new method directly targets distributional balance by minimizing optimal transport distances between treatment and control groups or, more generally, between a source and target population. Our approach is model-free but can also incorporate moments or any other important functions of covariates that the researcher desires to balance. We find that the causal optimal transport outperforms competitor methods when both the propensity score and outcome models are misspecified, indicating it is a robust alternative to common weighting methods. Finally, we demonstrate the utility of our method in an external control study examining the effect of misoprostol versus oxytocin for treatment of post-partum hemorrhage.
Deep kernel learning (DKL) leverages the connection between Gaussian process (GP) and neural networks (NN) to build an end-to-end, hybrid model. It combines the capability of NN to learn rich representations under massive data and the non-parametric property of GP to achieve automatic regularization that incorporates a trade-off between model fit and model complexity. However, the deterministic encoder may weaken the model regularization of the following GP part, especially on small datasets, due to the free latent representation. We therefore present a complete deep latent-variable kernel learning (DLVKL) model wherein the latent variables perform stochastic encoding for regularized representation. We further enhance the DLVKL from two aspects: (i) the expressive variational posterior through neural stochastic differential equation (NSDE) to improve the approximation quality, and (ii) the hybrid prior taking knowledge from both the SDE prior and the posterior to arrive at a flexible trade-off. Intensive experiments imply that the DLVKL-NSDE performs similarly to the well calibrated GP on small datasets, and outperforms existing deep GPs on large datasets.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا