Do you want to publish a course? Click here

A Modified Spheromak Model Suitable for Coronal Mass Ejection Simulations

95   0   0.0 ( 0 )
 Added by Talwinder Singh
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coronal Mass Ejections (CMEs) are one of the primary drivers of extreme space weather. They are large eruptions of mass and magnetic field from the solar corona and can travel the distance between Sun and Earth in half a day to a few days. Predictions of CMEs at 1 Astronomical Unit (AU), in terms of both its arrival time and magnetic field configuration, are very important for predicting space weather. Magnetohydrodynamic (MHD) modeling of CMEs, using flux-rope-based models is a promising tool for achieving this goal. In this study, we present one such model for CME simulations, based on spheromak magnetic field configuration. We have modified the spheromak solution to allow for independent input of poloidal and toroidal fluxes. The motivation for this is a possibility to estimate these fluxes from solar magnetograms and extreme ultraviolet (EUV) data from a number of different approaches. We estimate the poloidal flux of CME using post eruption arcades (PEAs) and toroidal flux from the coronal dimming. In this modified spheromak, we also have an option to control the helicity sign of flux ropes, which can be derived from the solar disk magnetograms using the magnetic tongue approach. We demonstate the applicability of this model by simulating the 12 July 2012 CME in the solar corona.



rate research

Read More

The magnetic fields of interplanetary coronal mass ejections (ICMEs), which originate close to the Sun in the form of a flux rope, determine their geoeffectiveness. Therefore, robust flux rope-based models of CMEs are required to perform magnetohydrodynamic (MHD) simulations aimed at space weather predictions. We propose a modified spheromak model and demonstrate its applicability to CME simulations. In this model, such properties of a simulated CME as the poloidal and toroidal magnetic fluxes, and the helicity sign can be controlled with a set of input parameters. We propose a robust technique for introducing CMEs with an appropriate speed into a background, MHD solution describing the solar wind in the inner heliosphere. Through a parametric study, we find that the speed of a CME is much more dependent on its poloidal flux than on the toroidal flux. We also show that the CME speed increases with its total energy, giving us control over its initial speed. We further demonstrate the applicability of this model to simulations of CME-CME collisions. Finally, we use this model to simulate the 12 July 2012 CME and compare the plasma properties at 1 AU with observations. The predicted CME properties agree reasonably with observational data.
The drag-based model (DBM) for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model which can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, covering ensemble modelling to produce a distribution of possible ICME arrival times and speeds, the drag-based ensemble model (DBEM). Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is $ME=-9.7$ hours, mean absolute error $MAE=14.3$ hours and root mean square error $RMSE=16.7$ hours, which is somewhat higher than, but comparable to ENLIL errors ($ME=-6.1$ hours, $MAE=12.8$ hours and $RMSE=14.4$ hours). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most probably owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.
Fast interplanetary coronal mass ejections (interplanetary CMEs, or ICMEs) are the drivers of strongest space weather storms such as solar energetic particle events and geomagnetic storms. The connection between space weather impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speed during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose the sheath-accumulating propagation (SAP) model that describe the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discussed (1) ICME deceleration characteristics, (2) the fundamental condition for fast ICME at Earth, (3) thickness of interplanetary sheath, (4) arrival time prediction and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only speed but also mass of the CME are crucial in discussing the above five points. The similarities and differences among the SAP model, the drag-based model and the`snow-plough model proposed by citet{tappin2006} are also discussed.
The Solar TErrestrial RElations Observatory (STEREO) and its heliospheric imagers (HI) have provided us the possibility to enhance our understanding of the interplanetary propagation of coronal mass ejections (CMEs). HI-based methods are able to forecast arrival times and speeds at any target and use the advantage of tracing a CMEs path of propagation up to 1 AU. In our study we use the ELEvoHI model for CME arrival prediction together with an ensemble approach to derive uncertainties in the modeled arrival time and impact speed. The CME from 3 November 2010 is analyzed by performing 339 model runs that are compared to in situ measurements from lined-up spacecraft MESSENGER and STEREO-B. Remote data from STEREO-B showed the CME as halo event, which is comparable to an HI observer situated at L1 and observing an Earth-directed CME. A promising and easy approach is found by using the frequency distributions of four ELEvoHI output parameters, drag parameter, background solar wind speed, initial distance and speed. In this case study, the most frequent values of these outputs lead to the predictions with the smallest errors. Restricting the ensemble to those runs, we are able to reduce the mean absolute arrival time error from $3.5 pm 2.6$ h to $1.6 pm 1.1$ h at 1 AU. Our study suggests that L1 may provide a sufficient vantage point for an Earth-directed CME, when observed by HI, and that ensemble modeling could be a feasible approach to use ELEvoHI operationally.
Coronal mass ejections (CMEs) cause various disturbances of the space environment; therefore, forecasting their arrival time is very important. However, forecasting accuracy is hindered by limited CME observations in interplanetary space. This study investigates the accuracy of CME arrival times at the Earth forecasted by three-dimensional (3D) magnetohydrodynamic (MHD) simulations based on interplanetary scintillation (IPS) observations. In this system, CMEs are approximated as spheromaks with various initial speeds. Ten MHD simulations with different CME initial speed are tested, and the density distributions derived from each simulation run are compared with IPS data observed by the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. The CME arrival time of the simulation run that most closely agrees with the IPS data is selected as the forecasted time. We then validate the accuracy of this forecast using 12 halo CME events. The average absolute arrival-time error of the IPS-based MHD forecast is approximately 5.0 h, which is one of the most accurate predictions that ever been validated, whereas that of MHD simulations without IPS data, in which the initial CME speed is derived from white-light coronagraph images, is approximately 6.7 h. This suggests that the assimilation of IPS data into MHD simulations can improve the accuracy of CME arrival-time forecasts. The average predicted arrival times are earlier than the actual arrival times. These early predictions may be due to overestimation of the magnetic field included in the spheromak and/or underestimation of the drag force from the background solar wind, the latter of which could be related to underestimation of CME size or background solar wind density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا