Do you want to publish a course? Click here

FONDUE: A Framework for Node Disambiguation Using Network Embeddings

101   0   0.0 ( 0 )
 Added by Ahmad Mel
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Real-world data often presents itself in the form of a network. Examples include social networks, citation networks, biological networks, and knowledge graphs. In their simplest form, networks represent real-life entities (e.g. people, papers, proteins, concepts) as nodes, and describe them in terms of their relations with other entities by means of edges between these nodes. This can be valuable for a range of purposes from the study of information diffusion to bibliographic analysis, bioinformatics research, and question-answering. The quality of networks is often problematic though, affecting downstream tasks. This paper focuses on the common problem where a node in the network in fact corresponds to multiple real-life entities. In particular, we introduce FONDUE, an algorithm based on network embedding for node disambiguation. Given a network, FONDUE identifies nodes that correspond to multiple entities, for subsequent splitting. Extensive experiments on twelve benchmark datasets demonstrate that FONDUE is substantially and uniformly more accurate for ambiguous node identification compared to the existing state-of-the-art, at a comparable computational cost, while less optimal for determining the best way to split ambiguous nodes.



rate research

Read More

Does adding a theorem to a paper affect its chance of acceptance? Does labeling a post with the authors gender affect the post popularity? This paper develops a method to estimate such causal effects from observational text data, adjusting for confounding features of the text such as the subject or writing quality. We assume that the text suffices for causal adjustment but that, in practice, it is prohibitively high-dimensional. To address this challenge, we develop causally sufficient embeddings, low-dimensional document representations that preserve sufficient information for causal identification and allow for efficient estimation of causal effects. Causally sufficient embeddings combine two ideas. The first is supervised dimensionality reduction: causal adjustment requires only the aspects of text that are predictive of both the treatment and outcome. The second is efficient language modeling: representations of text are designed to dispose of linguistically irrelevant information, and this information is also causally irrelevant. Our method adapts language models (specifically, word embeddings and topic models) to learn document embeddings that are able to predict both treatment and outcome. We study causally sufficient embeddings with semi-synthetic datasets and find that they improve causal estimation over related embedding methods. We illustrate the methods by answering the two motivating questions---the effect of a theorem on paper acceptance and the effect of a gender label on post popularity. Code and data available at https://github.com/vveitch/causal-text-embeddings-tf2}{github.com/vveitch/causal-text-embeddings-tf2
Answering complex logical queries on large-scale incomplete knowledge graphs (KGs) is a fundamental yet challenging task. Recently, a promising approach to this problem has been to embed KG entities as well as the query into a vector space such that entities that answer the query are embedded close to the query. However, prior work models queries as single points in the vector space, which is problematic because a complex query represents a potentially large set of its answer entities, but it is unclear how such a set can be represented as a single point. Furthermore, prior work can only handle queries that use conjunctions ($wedge$) and existential quantifiers ($exists$). Handling queries with logical disjunctions ($vee$) remains an open problem. Here we propose query2box, an embedding-based framework for reasoning over arbitrary queries with $wedge$, $vee$, and $exists$ operators in massive and incomplete KGs. Our main insight is that queries can be embedded as boxes (i.e., hyper-rectangles), where a set of points inside the box corresponds to a set of answer entities of the query. We show that conjunctions can be naturally represented as intersections of boxes and also prove a negative result that handling disjunctions would require embedding with dimension proportional to the number of KG entities. However, we show that by transforming queries into a Disjunctive Normal Form, query2box is capable of handling arbitrary logical queries with $wedge$, $vee$, $exists$ in a scalable manner. We demonstrate the effectiveness of query2box on three large KGs and show that query2box achieves up to 25% relative improvement over the state of the art.
Graph Neural Networks (GNNs) are efficient approaches to process graph-structured data. Modelling long-distance node relations is essential for GNN training and applications. However, conventional GNNs suffer from bad performance in modelling long-distance node relations due to limited-layer information propagation. Existing studies focus on building deep GNN architectures, which face the over-smoothing issue and cannot model node relations in particularly long distance. To address this issue, we propose to model long-distance node relations by simply relying on shallow GNN architectures with two solutions: (1) Implicitly modelling by learning to predict node pair relations (2) Explicitly modelling by adding edges between nodes that potentially have the same label. To combine our two solutions, we propose a model-agnostic training framework named HighwayGraph, which overcomes the challenge of insufficient labeled nodes by sampling node pairs from the training set and adopting the self-training method. Extensive experimental results show that our HighwayGraph achieves consistent and significant improvements over four representative GNNs on three benchmark datasets.
Graph embedding methods represent nodes in a continuous vector space, preserving information from the graph (e.g. by sampling random walks). There are many hyper-parameters to these methods (such as random walk length) which have to be manually tuned for every graph. In this paper, we replace random walk hyper-parameters with trainable parameters that we automatically learn via backpropagation. In particular, we learn a novel attention model on the power series of the transition matrix, which guides the random walk to optimize an upstream objective. Unlike previous approaches to attention models, the method that we propose utilizes attention parameters exclusively on the data (e.g. on the random walk), and not used by the model for inference. We experiment on link prediction tasks, as we aim to produce embeddings that best-preserve the graph structure, generalizing to unseen information. We improve state-of-the-art on a comprehensive suite of real world datasets including social, collaboration, and biological networks. Adding attention to random walks can reduce the error by 20% to 45% on datasets we attempted. Further, our learned attention parameters are different for every graph, and our automatically-found values agree with the optimal choice of hyper-parameter if we manually tune existing methods.
Abbreviation disambiguation is important for automated clinical note processing due to the frequent use of abbreviations in clinical settings. Current models for automated abbreviation disambiguation are restricted by the scarcity and imbalance of labeled training data, decreasing their generalizability to orthogonal sources. In this work we propose a novel data augmentation technique that utilizes information from related medical concepts, which improves our models ability to generalize. Furthermore, we show that incorporating the global context information within the whole medical note (in addition to the traditional local context window), can significantly improve the models representation for abbreviations. We train our model on a public dataset (MIMIC III) and test its performance on datasets from different sources (CASI, i2b2). Together, these two techniques boost the accuracy of abbreviation disambiguation by almost 14% on the CASI dataset and 4% on i2b2.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا