Do you want to publish a course? Click here

Computing Bi-Lipschitz Outlier Embeddings into the Line

109   0   0.0 ( 0 )
 Added by Karine Chubarian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The problem of computing a bi-Lipschitz embedding of a graphical metric into the line with minimum distortion has received a lot of attention. The best-known approximation algorithm computes an embedding with distortion $O(c^2)$, where $c$ denotes the optimal distortion [Bu{a}doiu etal~2005]. We present a bi-criteria approximation algorithm that extends the above results to the setting of emph{outliers}. Specifically, we say that a metric space $(X,rho)$ admits a $(k,c)$-embedding if there exists $Ksubset X$, with $|K|=k$, such that $(Xsetminus K, rho)$ admits an embedding into the line with distortion at most $c$. Given $kgeq 0$, and a metric space that admits a $(k,c)$-embedding, for some $cgeq 1$, our algorithm computes a $({mathsf p}{mathsf o}{mathsf l}{mathsf y}(k, c, log n), {mathsf p}{mathsf o}{mathsf l}{mathsf y}(c))$-embedding in polynomial time. This is the first algorithmic result for outlier bi-Lipschitz embeddings. Prior to our work, comparable outlier embeddings where known only for the case of additive distortion.



rate research

Read More

We propose a dimensionality reducing matrix design based on training data with constraints on its Frobenius norm and number of rows. Our design criteria is aimed at preserving the distances between the data points in the dimensionality reduced space as much as possible relative to their distances in original data space. This approach can be considered as a deterministic Bi-Lipschitz embedding of the data points. We introduce a scalable learning algorithm, dubbed AMUSE, and provide a rigorous estimation guarantee by leveraging game theoretic tools. We also provide a generalization characterization of our matrix based on our sample data. We use compressive sensing problems as an example application of our problem, where the Frobenius norm design constraint translates into the sensing energy.
A quasiconformal tree is a doubling metric tree in which the diameter of each arc is bounded above by a fixed multiple of the distance between its endpoints. In this paper we show that every quasiconformal tree bi-Lipschitz embeds in some Euclidean space, with the ambient dimension and the bi-Lipschitz constant depending only on the doubling and bounded turning constants of the tree. This answers Question 1.6 in cite{DV} (arXiv:2007.12297).
Let H be a graph, and let C_H(G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating C_H(G). Previous results cover only a few specific instances of this general problem, for example, the case when H has degree at most one (monomer-dimer problem). In this paper, we present the first general subcase of the subgraph isomorphism counting problem which is almost always efficiently approximable. The results rely on a new graph decomposition technique. Informally, the decomposition is a labeling of the vertices such that every edge is between vertices with different labels and for every vertex all neighbors with a higher label have identical labels. The labeling implicitly generates a sequence of bipartite graphs which permits us to break the problem of counting embeddings of large subgraphs into that of counting embeddings of small subgraphs. Using this method, we present a simple randomized algorithm for the counting problem. For all decomposable graphs H and all graphs G, the algorithm is an unbiased estimator. Furthermore, for all graphs H having a decomposition where each of the bipartite graphs generated is small and almost all graphs G, the algorithm is a fully polynomial randomized approximation scheme. We show that the graph classes of H for which we obtain a fully polynomial randomized approximation scheme for almost all G includes graphs of degree at most two, bounded-degree forests, bounded-length grid graphs, subdivision of bounded-degree graphs, and major subclasses of outerplanar graphs, series-parallel graphs and planar graphs, whereas unbounded-length grid graphs are excluded.
In this article we start a systematic study of the bi-Lipschitz geometry of lamplighter graphs. We prove that lamplighter graphs over trees bi-Lipschitzly embed into Hamming cubes with distortion at most~$6$. It follows that lamplighter graphs over countable trees bi-Lipschitzly embed into $ell_1$. We study the metric behaviour of the operation of taking the lamplighter graph over the vertex-coalescence of two graphs. Based on this analysis, we provide metric characterizations of superreflexivity in terms of lamplighter graphs over star graphs or rose graphs. Finally, we show that the presence of a clique in a graph implies the presence of a Hamming cube in the lamplighter graph over it. An application is a characterization in terms of a sequence of graphs with uniformly bounded degree of the notion of trivial Bourgain-Milman-Wolfson type for arbitrary metric spaces, similar to Ostrovskiis characterization previously obtained in cite{ostrovskii:11}.
We develop efficient algorithms for estimating low-degree moments of unknown distributions in the presence of adversarial outliers. The guarantees of our algorithms improve in many cases significantly over the best previous ones, obtained in recent works of Diakonikolas et al, Lai et al, and Charikar et al. We also show that the guarantees of our algorithms match information-theoretic lower-bounds for the class of distributions we consider. These improved guarantees allow us to give improved algorithms for independent component analysis and learning mixtures of Gaussians in the presence of outliers. Our algorithms are based on a standard sum-of-squares relaxation of the following conceptually-simple optimization problem: Among all distributions whose moments are bounded in the same way as for the unknown distribution, find the one that is closest in statistical distance to the empirical distribution of the adversarially-corrupted sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا