Do you want to publish a course? Click here

The regulation of galaxy growth along the size-mass relation by star-formation, as traced by H${alpha}$ in KMOS$^{3D}$ galaxies at 0.7 < z < 2.7

111   0   0.0 ( 0 )
 Added by Matteo Fossati
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present half-light sizes measured from H${alpha}$ emission tracing star-formation in 281 star-forming galaxies from the KMOS3D survey at 0.7 < z < 2.7. Sizes are derived by fitting 2D exponential disk models, with bootstrap errors averaging 20%. H${alpha}$ sizes are a median (mean) of 1.19 (1.26) times larger than those of the stellar continuum, which due to radial dust gradients places an upper limit on the growth in stellar size via star formation, with just 43% intrinsic scatter. At fixed continuum size the H${alpha}$ size shows no residual trend with stellar mass, star formation rate, redshift or morphology. The only significant residual trend is with the excess obscuration of H${alpha}$ by dust, at fixed continuum obscuration. The scatter in continuum size at fixed stellar mass is likely driven by the scatter in halo spin parameters. The stability of the ratio of H${alpha}$ size to continuum size demonstrates a high degree of stability in halo spin and in the transfer of angular momentum to the disk over a wide range of physical conditions and cosmic time. This may require local regulation by feedback processes. The implication of our results, as we demonstrate using a toy model, is that our upper limit on star-formation driven growth is sufficient only to evolve star-forming galaxies approximately along the observed size-mass relation, consistent with the size growth of galaxies at constant cumulative co-moving number density. To explain the observed evolution of the size-mass relation of star-forming disk galaxies other processes, such as the preferential quenching of compact galaxies or galaxy mergers, may be required.



rate research

Read More

We present the KMOS^3D survey, a new integral field survey of over 600 galaxies at 0.7<z<2.7 using KMOS at the Very Large Telescope (VLT). The KMOS^3D survey utilizes synergies with multi-wavelength ground and space-based surveys to trace the evolution of spatially-resolved kinematics and star formation from a homogeneous sample over 5 Gyrs of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass ($M_*$) and rest-frame $(U-V)-M_*$ planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first year of data we detect Halpha emission in 191 $M_*=3times10^{9}-7times10^{11}$ Msun galaxies at z=0.7-1.1 and z=1.9-2.7. In the current sample 83% of the resolved galaxies are rotation-dominated, determined from a continuous velocity gradient and $v_{rot}/sigma>1$, implying that the star-forming main sequence (MS) is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Halpha kinematic maps indicate at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous IFS studies at z>0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km/s at z~2.3 to 25 km/s at z~0.9 while the rotational velocities at the two redshifts are comparable. Combined with existing results spanning z~0-3, disk velocity dispersions follow an approximate (1+z) evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally-stable disk theory.
To investigate the variability of the star formation rate (SFR) of galaxies, we define a star formation change parameter, SFR$_{rm 5Myr}$/SFR$_{rm 800Myr}$ which is the ratio of the SFR averaged within the last 5 Myr to the SFR averaged within the last 800 Myr. We show that this parameter can be determined from a combination of H$alpha$ emission and H$delta$ absorption, plus the 4000 A break, with an uncertainty of $sim$0.07 dex for star-forming galaxies. We then apply this estimator to MaNGA galaxies, both globally within Re and within radial annuli. We find that galaxies with higher global SFR$_{rm 5Myr}$/SFR$_{rm 800Myr}$ appear to have higher SFR$_{rm 5Myr}$/SFR$_{rm 800Myr}$ at all galactic radii, i.e. that galaxies with a recent temporal enhancement in overall SFR have enhanced star formation at all galactic radii. The dispersion of the SFR$_{rm 5Myr}$/SFR$_{rm 800Myr}$ at a given relative galactic radius and a given stellar mass decreases with the (indirectly inferred) gas depletion time: locations with short gas depletion time appear to undergo bigger variations in their star-formation rates on Gyr or less timescales. In Wang et al. (2019) we showed that the dispersion in star-formation rate surface densities $Sigma_{rm SFR}$ in the galaxy population appears to be inversely correlated with the inferred gas depletion timescale and interpreted this in terms of the dynamical response of a gas-regulator system to changes in the gas inflow rate. In this paper, we can now prove directly with SFR$_{rm 5Myr}$/SFR$_{rm 800Myr}$ that these effects are indeed due to genuine temporal variations in the SFR of individual galaxies on timescales between $10^7$ and $10^9$ years rather than possibly reflecting intrinsic, non-temporal, differences between different galaxies.
We present a census of ionized gas outflows in 599 normal galaxies at redshift 0.6<z<2.7, mostly based on integral field spectroscopy of Ha, [NII], and [SII] line emission. The sample fairly homogeneously covers the main sequence of star-forming galaxies with masses 9.0<log(M*/Msun)<11.7, and probes into the regimes of quiescent galaxies and starburst outliers. About 1/3 exhibits the high-velocity component indicative of outflows, roughly equally split into winds driven by star formation (SF) and active galactic nuclei (AGN). The incidence of SF-driven winds correlates mainly with star formation properties. These outflows have typical velocities of ~450 km/s, local electron densities of n_e~380 cm^-3, modest mass loading factors of ~0.1-0.2 at all galaxy masses, and energetics compatible with momentum driving by young stellar populations. The SF-driven winds may escape from log(M*/Msun)<10.3 galaxies but substantial mass, momentum, and energy in hotter and colder outflow phases seem required to account for low galaxy formation efficiencies in the low-mass regime. Faster AGN-driven outflows (~1000-2000 km/s) are commonly detected above log(M*/Msun)~10.7, in up to ~75% of log(M*/Msun)>11.2 galaxies. The incidence, strength, and velocity of AGN-driven winds strongly correlates with stellar mass and central concentration. Their outflowing ionized gas appears denser (n_e~1000 cm^-3), and possibly compressed and shock-excited. These winds have comparable mass loading factors as the SF-driven winds but carry ~10 (~50) times more momentum (energy). The results confirm our previous findings of high duty cycle, energy-driven outflows powered by AGN above the Schechter mass, which may contribute to star formation quenching.
223 - Ken-ichi Tadaki 2010
We present a pilot narrow-band survey of H-alpha emitters at z=2.2 in the Great Observatories Origins Deep Survey North (GOODS-N) field with MOIRCS instrument on the Subaru telescope. The survey reached a 3 sigma limiting magnitude of 23.6 (NB209) which corresponds to a 3 sigma limiting line flux of 2.5 x 10^-17 erg s^-1 cm^-2 over a 56 arcmnin^2 contiguous area (excluding a shallower area). From this survey, we have identified 11 H-alpha emitters and one AGN at z=2.2 on the basis of narrow-band excesses and photometric redshifts. We obtained spectra for seven new objects among them, including one AGN, and an emission line above 3 sigma is detected from all of them. We have estimated star formation rates (SFR) and stellar masses (M_star) for individual galaxies. The average SFR and M_star is 27.8M_solar yr^-1 and 4.0 x 10^10M_solar, respectivly. Their specific star formation rates are inversely correlated with their stellar masses. Fitting to a Schechter function yields the H-alpha luminosity function with log L = 42.82, log phi = -2.78 and alpha = -1.37. The average star formation rate density in the survey volume is estimated to be 0.31M_solar yr^-1Mpc^-3 according to the Kennicutt relation between H-alpha luminosity and star formation rate. We compare our H-alpha emitters at z=2.2 in GOODS-N with narrow-band line emitters in other field and clusters to see their time evolution and environmental dependence. We find that the star formation activity is reduced rapidly from z=2.5 to z=0.8 in the cluster environment, while it is only moderately changed in the field environment. This result suggests that the timescale of galaxy formation is different among different environments, and the star forming activities in high density regions eventually overtake those in lower density regions as a consequence of galaxy formation bias at high redshifts.
The redshift range z=4-6 marks a transition phase between primordial and mature galaxy formation in which galaxies considerably increase their stellar mass, metallicity, and dust content. The study of galaxies in this redshift range is therefore important to understand early galaxy formation and the fate of galaxies at later times. Here, we investigate the burstiness of the recent star-formation history (SFH) of 221 $zsim4.5$ main-sequence galaxies at log(M) > 9.7 by comparing their ultra-violet (UV) continuum, H$alpha$ luminosity, and H$alpha$ equivalent-width (EW). The H$alpha$ properties are derived from the Spitzer [3.6$mu$m]-[4.5$mu$m] broad-band color, thereby properly taking into account model and photometric uncertainties. We find a significant scatter between H$alpha$ and UV-derived luminosities and star-formation rates (SFRs). About half of the galaxies show a significant excess in H$alpha$ compared to expectations from a constant smooth SFH. We also find a tentative anti-correlation between H$alpha$ EW and stellar mass, ranging from 1000$r{A}$ at log(M) < 10 to below 100$r{A}$ at log(M) > 11. Consulting models suggests that most $zsim4.5$ galaxies had a burst of star-formation within the last 50 Myrs, increasing their SFRs by a factor of > 5. The most massive galaxies on the other hand might decrease their SFRs, and may be transitioning to a quiescent stage by z=4. We identify differential dust attenuation (f) between stars and nebular regions as the main contributor to the uncertainty. With local galaxies selected by increasing H$alpha$ EW (reaching values similar to high-z galaxies), we predict that f approaches unity at $z>4$ consistent with the extrapolation of measurements out to z=2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا