Do you want to publish a course? Click here

Directed Acyclic Graphs and causal thinking in clinical risk prediction modeling

115   0   0.0 ( 0 )
 Added by Marco Piccininni
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Background: In epidemiology, causal inference and prediction modeling methodologies have been historically distinct. Directed Acyclic Graphs (DAGs) are used to model a priori causal assumptions and inform variable selection strategies for causal questions. Although tools originally designed for prediction are finding applications in causal inference, the counterpart has remained largely unexplored. The aim of this theoretical and simulation-based study is to assess the potential benefit of using DAGs in clinical risk prediction modeling. Methods and Findings: We explore how incorporating knowledge about the underlying causal structure can provide insights about the transportability of diagnostic clinical risk prediction models to different settings. A single-predictor model in the causal direction is likely to have better transportability than one in the anticausal direction. We further probe whether causal knowledge can be used to improve predictor selection. We empirically show that the Markov Blanket, the set of variables including the parents, children, and parents of the children of the outcome node in a DAG, is the optimal set of predictors for that outcome. Conclusions: Our findings challenge the generally accepted notion that a change in the distribution of the predictors does not affect diagnostic clinical risk prediction model calibration if the predictors are properly included in the model. Furthermore, using DAGs to identify Markov Blanket variables may be a useful, efficient strategy to select predictors in clinical risk prediction models if strong knowledge of the underlying causal structure exists or can be learned.



rate research

Read More

The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a classical problem that provides a clear and simple mathematical formulation for several applications in different areas and that has an efficient algorithmic solution. In this paper, we study the computational complexity of two constrained variants of Minimum Path Cover motivated by the recent introduction of next-generation sequencing technologies in bioinformatics. The first problem (MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum cardinality set of paths covering all the vertices such that both vertices of each pair belong to the same path. For this problem, we show that, while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible to decide in polynomial time whether a solution consisting of at most two paths exists. The second problem (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a path containing the maximum number of the given pairs of vertices. We show its NP-hardness and also its W[1]-hardness when parametrized by the number of covered pairs. On the positive side, we give a fixed-parameter algorithm when the parameter is the maximum overlapping degree, a natural parameter in the bioinformatics applications of the problem.
In the genomic era, the identification of gene signatures associated with disease is of significant interest. Such signatures are often used to predict clinical outcomes in new patients and aid clinical decision-making. However, recent studies have shown that gene signatures are often not replicable. This occurrence has practical implications regarding the generalizability and clinical applicability of such signatures. To improve replicability, we introduce a novel approach to select gene signatures from multiple datasets whose effects are consistently non-zero and account for between-study heterogeneity. We build our model upon some rank-based quantities, facilitating integration over different genomic datasets. A high dimensional penalized Generalized Linear Mixed Model (pGLMM) is used to select gene signatures and address data heterogeneity. We compare our method to some commonly used strategies that select gene signatures ignoring between-study heterogeneity. We provide asymptotic results justifying the performance of our method and demonstrate its advantage in the presence of heterogeneity through thorough simulation studies. Lastly, we motivate our method through a case study subtyping pancreatic cancer patients from four gene expression studies.
Clinical prediction models (CPMs) are used to predict clinically relevant outcomes or events. Typically, prognostic CPMs are derived to predict the risk of a single future outcome. However, with rising emphasis on the prediction of multi-morbidity, there is growing need for CPMs to simultaneously predict risks for each of multiple future outcomes. A common approach to multi-outcome risk prediction is to derive a CPM for each outcome separately, then multiply the predicted risks. This approach is only valid if the outcomes are conditionally independent given the covariates, and it fails to exploit the potential relationships between the outcomes. This paper outlines several approaches that could be used to develop prognostic CPMs for multiple outcomes. We consider four methods, ranging in complexity and assumed conditional independence assumptions: namely, probabilistic classifier chain, multinomial logistic regression, multivariate logistic regression, and a Bayesian probit model. These are compared with methods that rely on conditional independence: separate univariate CPMs and stacked regression. Employing a simulation study and real-world example via the MIMIC-III database, we illustrate that CPMs for joint risk prediction of multiple outcomes should only be derived using methods that model the residual correlation between outcomes. In such a situation, our results suggest that probabilistic classification chains, multinomial logistic regression or the Bayesian probit model are all appropriate choices. We call into question the development of CPMs for each outcome in isolation when multiple correlated or structurally related outcomes are of interest and recommend more holistic risk prediction.
Missing data is a pervasive problem in data analyses, resulting in datasets that contain censored realizations of a target distribution. Many approaches to inference on the target distribution using censored observed data, rely on missing data models represented as a factorization with respect to a directed acyclic graph. In this paper we consider the identifiability of the target distribution within this class of models, and show that the most general identification strategies proposed so far retain a significant gap in that they fail to identify a wide class of identifiable distributions. To address this gap, we propose a new algorithm that significantly generalizes the types of manipulations used in the ID algorithm, developed in the context of causal inference, in order to obtain identification.
We introduce a structure for the directed acyclic graph (DAG) and a mechanism design based on that structure so that peers can reach consensus at large scale based on proof of work (PoW). We also design a mempool transaction assignment method based on the DAG structure to render negligible the probability that a transaction being processed by more than one miners. The result is a significant scale-up of the capacity without sacrificing security and decentralization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا