Do you want to publish a course? Click here

Recommendations for optimizing rapid ultraviolet HST observations of gravitational wave optical counterparts

119   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This document presentes general guidelines to investigators proposing ultra-rapid target of opportunity (ToO) observations with the Hubble Space Telescope (HST). Establishing clear plans in advance and communicating with STScI staff, particularly the Program Coordinator, are crucial to minimising the time between triggering a ToO and executing the observations.



rate research

Read More

With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the error regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational-wave astronomy has led to the proposal for a variety of tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, for future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to maximize the probability of counterpart detection.
The ever-increasing sensitivity of the network of gravitational-wave detectors has resulted in the accelerated rate of detections from compact binary coalescence systems in the third observing run of Advanced LIGO and Advanced Virgo. Not only has the event rate increased, but also the distances to which phenomena can be detected, leading to a rise in the required sky volume coverage to search for counterparts. Additionally, the improvement of the detectors has resulted in the discovery of more compact binary mergers involving neutron stars, revitalizing dedicated follow-up campaigns. While significant effort has been made by the community to optimize single telescope observations, using both synoptic and galaxy-targeting methods, less effort has been paid to coordinated observations in a network. This is becoming crucial, as the advent of gravitational-wave astronomy has garnered interest around the globe, resulting in abundant networks of telescopes available to search for counterparts. In this paper, we extend some of the techniques developed for single telescopes to a telescope network. We describe simple modifications to these algorithms and demonstrate them on existing network examples. These algorithms are implemented in the open-source software texttt{gwemopt}, used by some follow-up teams, for ease of use by the broader community.
The first direct detection of gravitational waves (GW) by the ground-based interferometers is expected to occur within the next few years. These interferometers will detect the mergers of compact object binaries composed of neutron stars and/or black holes to a fiducial distance of ~200 Mpc and a localization region of ~100 sq. deg. To maximize the science gains from such GW detections it is essential to identify electromagnetic (EM) counterparts. The most promising such counterpart is optical/IR emission powered by the radioactive decay of r-process elements synthesized in the neutron-rich merger ejecta - a kilonova. Here we present detailed simulated observations that encompass a range of strategies for kilonova searches during GW follow-up. We assess both the detectability of kilonovae and our ability to distinguish them from a wide range of contaminating transients. We find that if pre-existing template images for the localization region are available, then nightly observations to a depth of i=24 mag and z=23 mag are required to achieve a 95% detection rate; observations that commence within 12 hours of trigger will also capture the kilonova peak and provide stronger constraints on the ejecta properties. We also find that kilonovae can be robustly separated from other types of transients utilizing cuts on color (i-z > 0 mag) and rise time (< 4 days). In the absence of a pre-existing template the observations must reach ~1 mag deeper to achieve the same kilonova detection rate, but robust rejection of contaminants can still be achieved. Motivated by the results of our simulations we discuss the expected performance of current and future wide-field telescopes in achieving these observational goals, and find that prior to LSST the Dark Energy Camera on the Blanco 4-m telescope and Hyper Suprime-Cam on the Subaru 8-m telescope offer the best kilonova discovery potential.
During the LIGO and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type.
202 - M. Branchesi 2011
A pioneering electromagnetic (EM) observation follow-up program of candidate gravitational wave (GW) triggers has been performed, Dec 17 2009 to Jan 8 2010 and Sep 4 to Oct 20 2010, during the recent LIGO/Virgo run. The follow-up program involved ground-based and space EM facilities observing the sky at optical, X-ray and radio wavelengths. The joint GW/EM observation study requires the development of specific image analysis procedures able to discriminate the possible EM counterpart of GW trigger from background events. The paper shows an overview of the EM follow-up program and the developing image analysis procedures as they are applied to data collected with TAROT and Zadko.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا