Do you want to publish a course? Click here

Searching for electromagnetic counterparts of gravitational wave transients

201   0   0.0 ( 0 )
 Added by Marica Branchesi
 Publication date 2011
  fields Physics
and research's language is English
 Authors M. Branchesi




Ask ChatGPT about the research

A pioneering electromagnetic (EM) observation follow-up program of candidate gravitational wave (GW) triggers has been performed, Dec 17 2009 to Jan 8 2010 and Sep 4 to Oct 20 2010, during the recent LIGO/Virgo run. The follow-up program involved ground-based and space EM facilities observing the sky at optical, X-ray and radio wavelengths. The joint GW/EM observation study requires the development of specific image analysis procedures able to discriminate the possible EM counterpart of GW trigger from background events. The paper shows an overview of the EM follow-up program and the developing image analysis procedures as they are applied to data collected with TAROT and Zadko.



rate research

Read More

With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the error regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational-wave astronomy has led to the proposal for a variety of tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, for future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to maximize the probability of counterpart detection.
The recent discoveries of gravitational wave events and in one case also its electromagnetic (EM) counterpart allow us to study the Universe in a novel way. The increased sensitivity of the LIGO and Virgo detectors has opened the possibility for regular detections of EM transient events from mergers of stellar remnants. Gravitational wave sources are expected to have sky localisation up to a few hundred square degrees, thus Gaia as an all-sky multi-epoch photometric survey has the potential to be a good tool to search for the EM counterparts. In this paper we study the possibility of detecting EM counterparts to gravitational wave sources using the Gaia Science Alerts system. We develop an extension to current used algorithms to find transients and test its capabilities in discovering candidate transients on a sample of events from the observation periods O1 and O2 of LIGO and Virgo. For the gravitational wave events from the current run O3 we expect that about 16 (25) per cent should fall in sky regions observed by Gaia 7 (10) days after gravitational wave. The new algorithm will provide about 10 candidates per day from the whole sky.
The ever-increasing sensitivity of the network of gravitational-wave detectors has resulted in the accelerated rate of detections from compact binary coalescence systems in the third observing run of Advanced LIGO and Advanced Virgo. Not only has the event rate increased, but also the distances to which phenomena can be detected, leading to a rise in the required sky volume coverage to search for counterparts. Additionally, the improvement of the detectors has resulted in the discovery of more compact binary mergers involving neutron stars, revitalizing dedicated follow-up campaigns. While significant effort has been made by the community to optimize single telescope observations, using both synoptic and galaxy-targeting methods, less effort has been paid to coordinated observations in a network. This is becoming crucial, as the advent of gravitational-wave astronomy has garnered interest around the globe, resulting in abundant networks of telescopes available to search for counterparts. In this paper, we extend some of the techniques developed for single telescopes to a telescope network. We describe simple modifications to these algorithms and demonstrate them on existing network examples. These algorithms are implemented in the open-source software texttt{gwemopt}, used by some follow-up teams, for ease of use by the broader community.
Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipelines ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.
The Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo Collaborations Observing Run 3 has demanded the development of widely-applicable tools for gravitational wave follow-up. These tools must address the main challenges of the multi-messenger era, namely covering large localisation regions and quickly identifying decaying transients. To address these challenges, we present a public web interface to assist astronomers in conducting galaxy-targeted follow-up of gravitational wave events by offering a fast and public list of targets post-gravitational wave trigger. After a gravitational wave trigger, the back-end galaxy retrieval algorithm identifies and scores galaxies based on the LIGO and Virgo computed probabilities and properties of the galaxies taken from the Galaxy List for the Advanced Detector Era (GLADE) V2 galaxy catalogue. Within minutes, the user can retrieve, download, and limit ranked galaxy lists from the web application. The algorithm and website have been tested on past gravitational wave events, and execution times have been analysed. The algorithm is being triggered automatically during Observing Run 3 and its features will be extended if needed. The web application was developed using the Python based Flask web framework. The web application is freely available and publicly accessible at gwtool.watchertelescope.ie.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا