Do you want to publish a course? Click here

Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological Reconstruction and Wavelet frames

69   0   0.0 ( 0 )
 Added by Cong Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Instead of directly utilizing an observed image including some outliers, noise or intensity inhomogeneity, the use of its ideal value (e.g. noise-free image) has a favorable impact on clustering. Hence, the accurate estimation of the residual (e.g. unknown noise) between the observed image and its ideal value is an important task. To do so, we propose an $ell_0$ regularization-based Fuzzy $C$-Means (FCM) algorithm incorporating a morphological reconstruction operation and a tight wavelet frame transform. To achieve a sound trade-off between detail preservation and noise suppression, morphological reconstruction is used to filter an observed image. By combining the observed and filtered images, a weighted sum image is generated. Since a tight wavelet frame system has sparse representations of an image, it is employed to decompose the weighted sum image, thus forming its corresponding feature set. Taking it as data for clustering, we present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value, which implies that the favorable estimation of the residual is obtained and the ideal value participates in clustering. Spatial information is also introduced into clustering since it is naturally encountered in image segmentation. Furthermore, it makes the estimation of the residual more reliable. To further enhance the segmentation effects of the improved FCM algorithm, we also employ the morphological reconstruction to smoothen the labels generated by clustering. Finally, based on the prototypes and smoothed labels, the segmented image is reconstructed by using a tight wavelet frame reconstruction operation. Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.



rate research

Read More

Although spatial information of images usually enhance the robustness of the Fuzzy C-Means (FCM) algorithm, it greatly increases the computational costs for image segmentation. To achieve a sound trade-off between the segmentation performance and the speed of clustering, we come up with a Kullback-Leibler (KL) divergence-based FCM algorithm by incorporating a tight wavelet frame transform and a morphological reconstruction operation. To enhance FCMs robustness, an observed image is first filtered by using the morphological reconstruction. A tight wavelet frame system is employed to decompose the observed and filtered images so as to form their feature sets. Considering these feature sets as data of clustering, an modified FCM algorithm is proposed, which introduces a KL divergence term in the partition matrix into its objective function. The KL divergence term aims to make membership degrees of each image pixel closer to those of its neighbors, which brings that the membership partition becomes more suitable and the parameter setting of FCM becomes simplified. On the basis of the obtained partition matrix and prototypes, the segmented feature set is reconstructed by minimizing the inverse process of the modified objective function. To modify abnormal features produced in the reconstruction process, each reconstructed feature is reassigned to the closest prototype. As a result, the segmentation accuracy of KL divergence-based FCM is further improved. Whats more, the segmented image is reconstructed by using a tight wavelet frame reconstruction operation. Finally, supporting experiments coping with synthetic, medical and color images are reported. Experimental results exhibit that the proposed algorithm works well and comes with better segmentation performance than other comparative algorithms. Moreover, the proposed algorithm requires less time than most of the FCM-related algorithms.
Due to its inferior characteristics, an observed (noisy) images direct use gives rise to poor segmentation results. Intuitively, using its noise-free image can favorably impact image segmentation. Hence, the accurate estimation of the residual between observed and noise-free images is an important task. To do so, we elaborate on residual-driven Fuzzy C-Means (FCM) for image segmentation, which is the first approach that realizes accurate residual estimation and leads noise-free image to participate in clustering. We propose a residual-driven FCM framework by integrating into FCM a residual-related fidelity term derived from the distribution of different types of noise. Built on this framework, we present a weighted $ell_{2}$-norm fidelity term by weighting mixed noise distribution, thus resulting in a universal residual-driven FCM algorithm in presence of mixed or unknown noise. Besides, with the constraint of spatial information, the residual estimation becomes more reliable than that only considering an observed image itself. Supporting experiments on synthetic, medical, and real-world images are conducted. The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over existing FCM-related algorithms.
Linear and non-linear measures of heart rate variability (HRV) are widely investigated as non-invasive indicators of health. Stress has a profound impact on heart rate, and different meditation techniques have been found to modulate heartbeat rhythm. This paper aims to explore the process of identifying appropriate metrices from HRV analysis for sonification. Sonification is a type of auditory display involving the process of mapping data to acoustic parameters. This work explores the use of auditory display in aiding the analysis of HRV leveraged by unsupervised machine learning techniques. Unsupervised clustering helps select the appropriate features to improve the sonification interpretability. Vocal synthesis sonification techniques are employed to increase comprehension and learnability of the processed data displayed through sound. These analyses are early steps in building a real-time sound-based biofeedback training system.
G-images refer to image data defined on irregular graph domains. This work elaborates a similarity-preserving Fuzzy C-Means (FCM) algorithm for G-image segmentation and aims to develop techniques and tools for segmenting G-images. To preserve the membership similarity between an arbitrary image pixel and its neighbors, a Kullback-Leibler divergence term on membership partition is introduced as a part of FCM. As a result, similarity-preserving FCM is developed by considering spatial information of image pixels for its robustness enhancement. Due to superior characteristics of a wavelet space, the proposed FCM is performed in this space rather than Euclidean one used in conventional FCM to secure its high robustness. Experiments on synthetic and real-world G-images demonstrate that it indeed achieves higher robustness and performance than the state-of-the-art FCM algorithms. Moreover, it requires less computation than most of them.
This paper introduces a framework for super-resolution of scalable video based on compressive sensing and sparse representation of residual frames in reconnaissance and surveillance applications. We exploit efficient compressive sampling and sparse reconstruction algorithms to super-resolve the video sequence with respect to different compression rates. We use the sparsity of residual information in residual frames as the key point in devising our framework. Moreover, a controlling factor as the compressibility threshold to control the complexity-performance trade-off is defined. Numerical experiments confirm the efficiency of the proposed framework in terms of the compression rate as well as the quality of reconstructed video sequence in terms of PSNR measure. The framework leads to a more efficient compression rate and higher video quality compared to other state-of-the-art algorithms considering performance-complexity trade-offs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا