Do you want to publish a course? Click here

A Framework for Super-Resolution of Scalable Video via Sparse Reconstruction of Residual Frames

263   0   0.0 ( 0 )
 Added by Saeed Vahidian
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper introduces a framework for super-resolution of scalable video based on compressive sensing and sparse representation of residual frames in reconnaissance and surveillance applications. We exploit efficient compressive sampling and sparse reconstruction algorithms to super-resolve the video sequence with respect to different compression rates. We use the sparsity of residual information in residual frames as the key point in devising our framework. Moreover, a controlling factor as the compressibility threshold to control the complexity-performance trade-off is defined. Numerical experiments confirm the efficiency of the proposed framework in terms of the compression rate as well as the quality of reconstructed video sequence in terms of PSNR measure. The framework leads to a more efficient compression rate and higher video quality compared to other state-of-the-art algorithms considering performance-complexity trade-offs.



rate research

Read More

94 - Sheng Li , Fengxiang He , Bo Du 2019
Recently, deep learning based video super-resolution (SR) methods have achieved promising performance. To simultaneously exploit the spatial and temporal information of videos, employing 3-dimensional (3D) convolutions is a natural approach. However, straight utilizing 3D convolutions may lead to an excessively high computational complexity which restricts the depth of video SR models and thus undermine the performance. In this paper, we present a novel fast spatio-temporal residual network (FSTRN) to adopt 3D convolutions for the video SR task in order to enhance the performance while maintaining a low computational load. Specifically, we propose a fast spatio-temporal residual block (FRB) that divide each 3D filter to the product of two 3D filters, which have considerably lower dimensions. Furthermore, we design a cross-space residual learning that directly links the low-resolution space and the high-resolution space, which can greatly relieve the computational burden on the feature fusion and up-scaling parts. Extensive evaluations and comparisons on benchmark datasets validate the strengths of the proposed approach and demonstrate that the proposed network significantly outperforms the current state-of-the-art methods.
Instead of directly utilizing an observed image including some outliers, noise or intensity inhomogeneity, the use of its ideal value (e.g. noise-free image) has a favorable impact on clustering. Hence, the accurate estimation of the residual (e.g. unknown noise) between the observed image and its ideal value is an important task. To do so, we propose an $ell_0$ regularization-based Fuzzy $C$-Means (FCM) algorithm incorporating a morphological reconstruction operation and a tight wavelet frame transform. To achieve a sound trade-off between detail preservation and noise suppression, morphological reconstruction is used to filter an observed image. By combining the observed and filtered images, a weighted sum image is generated. Since a tight wavelet frame system has sparse representations of an image, it is employed to decompose the weighted sum image, thus forming its corresponding feature set. Taking it as data for clustering, we present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value, which implies that the favorable estimation of the residual is obtained and the ideal value participates in clustering. Spatial information is also introduced into clustering since it is naturally encountered in image segmentation. Furthermore, it makes the estimation of the residual more reliable. To further enhance the segmentation effects of the improved FCM algorithm, we also employ the morphological reconstruction to smoothen the labels generated by clustering. Finally, based on the prototypes and smoothed labels, the segmented image is reconstructed by using a tight wavelet frame reconstruction operation. Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
219 - Yudong Liang , Ze Yang , Kai Zhang 2017
Recent years have witnessed great success of convolutional neural network (CNN) for various problems both in low and high level visions. Especially noteworthy is the residual network which was originally proposed to handle high-level vision problems and enjoys several merits. This paper aims to extend the merits of residual network, such as skip connection induced fast training, for a typical low-level vision problem, i.e., single image super-resolution. In general, the two main challenges of existing deep CNN for supper-resolution lie in the gradient exploding/vanishing problem and large numbers of parameters or computational cost as CNN goes deeper. Correspondingly, the skip connections or identity mapping shortcuts are utilized to avoid gradient exploding/vanishing problem. In addition, the skip connections have naturally centered the activation which led to better performance. To tackle with the second problem, a lightweight CNN architecture which has carefully designed width, depth and skip connections was proposed. In particular, a strategy of gradually varying the shape of network has been proposed for residual network. Different residual architectures for image super-resolution have also been compared. Experimental results have demonstrated that the proposed CNN model can not only achieve state-of-the-art PSNR and SSIM results for single image super-resolution but also produce visually pleasant results. This paper has extended the mmm 2017 oral conference paper with a considerable new analyses and more experiments especially from the perspective of centering activations and ensemble behaviors of residual network.
A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Extensive experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.
Video super-resolution (VSR), with the aim to restore a high-resolution video from its corresponding low-resolution version, is a spatial-temporal sequence prediction problem. Recently, Transformer has been gaining popularity due to its parallel computing ability for sequence-to-sequence modeling. Thus, it seems to be straightforward to apply the vision Transformer to solve VSR. However, the typical block design of Transformer with a fully connected self-attention layer and a token-wise feed-forward layer does not fit well for VSR due to the following two reasons. First, the fully connected self-attention layer neglects to exploit the data locality because this layer relies on linear layers to compute attention maps. Second, the token-wise feed-forward layer lacks the feature alignment which is important for VSR since this layer independently processes each of the input token embeddings without any interaction among them. In this paper, we make the first attempt to adapt Transformer for VSR. Specifically, to tackle the first issue, we present a spatial-temporal convolutional self-attention layer with a theoretical understanding to exploit the locality information. For the second issue, we design a bidirectional optical flow-based feed-forward layer to discover the correlations across different video frames and also align features. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our proposed method. The code will be available at https://github.com/caojiezhang/VSR-Transformer.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا