Do you want to publish a course? Click here

Nanoscale magnetic resonance imaging of proteins in a single cell

77   0   0.0 ( 0 )
 Added by Fazhan Shi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic resonance imaging (MRI) is a non-invasive and label-free technique widely used in medical diagnosis and life science research, and its success has benefited greatly from continuing efforts on enhancing contrast and resolution. Here we reported nanoscale MRI in a single cell using an atomic-size quantum sensor. With nitrogen-vacancy center in diamond, the intracellular protein ferritin has been imaged with a spatial resolution of ~ 10 nanometers, and ferritin-containing organelles were co-localized by correlative MRI and electron microscopy. Comparing to the current micrometer resolution in current state-of-art conventional MRI, our approach represents a 100-fold enhancement, and paves the way for MRI of intracellular proteins.



rate research

Read More

98 - Michael Baudoin 2020
Acoustical tweezers open major prospects in microbiology for cells and microorganisms contactless manipulation, organization and mechanical properties testing since they are biocompatible, label-free and can exert forces several orders of magnitude larger than their optical counterpart at equivalent wave power. Yet, these tremendous perspectives have so far been hindered by the absence of selectivity of existing acoustical tweezers -- i.e., the ability to select and move objects individually -- and/or their limited resolution restricting their use to large particle manipulation only. Here, we report precise selective contactless manipulation and positioning of human cells in a standard microscopy environment, without altering their viability. Trapping forces of up to $sim$ 200 pN are reported with less than 2 mW of driving power. The unprecedented selectivity, miniaturization and trapping force are achieved by combining holography with active materials and fabrication techniques derived from the semi-conductor industry to synthesize specific wavefields (called focused acoustical vortices) designed to produce stiff localized traps. We anticipate this work to be a starting point toward widespread applications of acoustical tweezers in fields as diverse as tissue engineering, cell mechano-transduction analysis, neural network study or mobile microorganisms imaging, for which precise manipulation and/or controlled application of stresses is mandatory.
Sensitive, real-time optical magnetometry with nitrogen-vacancy centers in diamond relies on accurate imaging of small ($ll 10^{-2}$) fractional fluorescence changes across the diamond sample. We discuss the limitations on magnetic-field sensitivity resulting from the limited number of photoelectrons that a camera can record in a given time. Several types of camera sensors are analyzed and the smallest measurable magnetic-field change is estimated for each type. We show that most common sensors are of a limited use in such applications, while certain highly specific cameras allow to achieve nanotesla-level sensitivity in $1$~s of a combined exposure. Finally, we demonstrate the results obtained with a lock-in camera that pave the way for real-time, wide-field magnetometry at the nanotesla level and with micrometer resolution.
The ability to perform nanoscale electric field imaging of elementary charges at ambient temperatures will have diverse interdisciplinary applications. While the nitrogen-vacancy (NV) center in diamond is capable of high-sensitivity electrometry, demonstrations have so far been limited to macroscopic field features or detection of single charges internal to diamond itself. In this work we greatly extend these capabilities by using a shallow NV center to image the electric field of a charged atomic force microscope tip with nanoscale resolution. This is achieved by measuring Stark shifts in the NV spin-resonance due to AC electric fields. To achieve this feat we employ for the first time, the integration of Qdyne with scanning quantum microscopy. We demonstrate near single charge sensitivity of $eta_e = 5.3$ charges/$sqrt{text{Hz}}$, and sub-charge detection ($0.68e$). This proof-of-concept experiment provides the motivation for further sensing and imaging of electric fields using NV centers in diamond.
125 - Cecile Leduc 2013
Single molecule tracking in live cells is the ultimate tool to study subcellular protein dynamics, but it is often limited by the probe size and photostability. Due to these issues, long-term tracking of proteins in confined and crowded environments, such as intracellular spaces, remains challenging. We have developed a novel optical probe consisting of 5-nm gold nanoparticles functionalized with a small fragment of camelid antibodies that recognize widely used GFPs with a very high affinity, which we call GFP-nanobodies. These small gold nanoparticles can be detected and tracked using photothermal imaging for arbitrarily long periods of time. Surface and intracellular GFP-proteins were effectively labeled even in very crowded environments such as adhesion sites and cytoskeletal structures both in vitro and in live cell cultures. These nanobody-coated gold nanoparticles are probes with unparalleled capabilities; small size, perfect photostability, high specificity, and versatility afforded by combination with the vast existing library of GFP-tagged proteins.
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolution with high sensitivity. Still, vector AC magnetometry currently relies on using different orientations of an ensemble of sensors, with degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field by tuning a continuous driving to distinct resonance conditions. We map the spatial distribution of an AC field generated by a copper wire on the surface of the diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity to both coherent and stochastic signals, with broad applications in condensed matter physics, such as probing spin fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا