No Arabic abstract
The infamous strong CP problem in particle physics can in principle be solved by a massless up quark. In particular, it was hypothesized that topological effects could substantially contribute to the observed nonzero up-quark mass without reintroducing CP violation. Alternatively to previous work using fits to chiral perturbation theory, in this Letter, we bound the strength of the topological mass contribution with direct lattice QCD simulations, by computing the dependence of the pion mass on the dynamical strange-quark mass. We find that the size of the topological mass contribution is inconsistent with the massless up-quark solution to the strong CP problem.
We calculate the electric dipole moment of the nucleon induced by the QCD theta term. We use the gradient flow to define the topological charge and use $N_f = 2+1$ flavors of dynamical quarks corresponding to pion masses of $700$, $570$, and $410$ MeV, and perform an extrapolation to the physical point based on chiral perturbation theory. We perform calculations at $3$ different lattice spacings in the range of $0.07~{rm fm} < a < 0.11$ fm at a single value of the pion mass, to enable control on discretization effects. We also investigate finite size effects using $2$ different volumes. A novel technique is applied to improve the signal-to-noise ratio in the form factor calculations. The very mild discretization effects observed suggest a continuum-like behavior of the nucleon EDM towards the chiral limit. Under this assumption our results read $d_{n}=-0.00152(71) bartheta e~text{fm}$ and $d_{p}=0.0011(10) bartheta e~text{fm}$. Assuming the theta term is the only source of CP violation, the experimental bound on the neutron electric dipole moment limits $left|barthetaright| < 1.98times 10^{-10}$ ($90%$ CL). A first attempt at calculating the nucleon Schiff moment in the continuum resulted in $S_{p} = 0.50(59)times 10^{-4} bartheta e~text{fm}^3$ and $S_{n} = -0.10(43)times 10^{-4} bartheta e~text{fm}^3$.
We present the first chiral-continuum extrapolated up, down and strange quark spin contribution to the proton spin using lattice QCD. For the connected contributions, we use eleven ensembles of 2+1+1-flavor of Highly Improved Staggered Quarks (HISQ) generated by the MILC Collaboration. They cover four lattice spacings $a approx {0.15,0.12,0.09,0.06}$ fm and three pion masses, $M_pi approx {315,220,135}$ MeV, of which two are at the physical pion mass. The disconnected strange calculations are done on seven of these ensembles, covering the four lattice spacings but only one with the physical pion mass. The disconnected light quark calculation was done on six ensembles at two values of $M_pi approx {315,220}$ MeV. High-statistics estimates on each ensemble for all three quantities allow us to quantify systematic uncertainties and perform a simultaneous chiral-continuum extrapolation in the lattice spacing and the light-quark mass. Our final results are $Delta u equiv langle 1 rangle_{Delta u^+} = 0.777(25)(30)$, $Delta d equiv langle 1 rangle_{Delta d^+} = -0.438(18)(30)$, and $Delta s equiv langle 1 rangle_{Delta s^+} = -0.053(8)$, adding up to a total quark contribution to proton spin of $sum_{q=u,d,s} (frac{1}{2} Delta q) = 0.143(31)(36)$. The second error is the systematic uncertainty associated with the chiral-continuum extrapolation. These results are obtained without model assumptions and are in good agreement with the recent COMPASS analysis $0.13 < frac{1}{2} Delta Sigma < 0.18$, and with the $Delta q$ obtained from various global analyses of polarized beam or target data.
We construct a theory in which the solution to the strong CP problem is an emergent property of the background of the dark matter in the Universe. The role of the axion degree of freedom is played by multi-body collective excitations similar to spin-waves in the medium of the dark matter of the Galactic halo. The dark matter is a vector particle whose low energy interactions with the Standard Model take the form of its spin density coupled to $G widetilde{G}$, which induces a potential on the average spin density inducing it to compensate $overline{theta}$, effectively removing CP violation in the strong sector in regions of the Universe with sufficient dark matter density. We discuss the viable parameter space, finding that light dark matter masses within a few orders of magnitude of the fuzzy limit are preferred, and discuss the associated signals with this type of solution to the strong CP problem.
We present a new solution to the strong CP problem in which the imaginary component of the up quark mass, $mathcal{I}[m_u]$, acquires a tiny, but non-vanishing value. This is achieved via a Dirac seesaw mechanism, which is also responsible for the generation of the small neutrino masses. Consistency with the observed value of the up quark mass is achieved via instanton contributions arising from QCD-like interactions. In this framework, the value of the neutron electric dipole moment is directly related to $mathcal{I}[m_u]$, which, due to its common origin with the neutrino masses, implies that the neutron electric dipole moment is likely to be measured in the next round of experiments. We also present a supersymmetric extension of this Dirac seesaw model to stabilize the hierarchy among the scalar mass scales involved in this new mechanism.
We present a new method to evaluate with high precision isospin breaking effects due to the small mass difference between the up and down quarks using lattice QCD. Our proposal is applicable in principle to any hadronic observable which can be computed on the lattice. It is based on the expansion of the path-integral in powers of the small parameter md-mu. In this paper, we apply this method to compute the leading isospin breaking effects for several physical quantities of interest: the kaon meson masses, the kaon decay constant, the form factors of semileptonic Kl3 decays and the neutron-proton mass splitting.