No Arabic abstract
We consider practical data characteristics underlying federated learning, where unbalanced and non-i.i.d. data from clients have a block-cyclic structure: each cycle contains several blocks, and each clients training data follow block-specific and non-i.i.d. distributions. Such a data structure would introduce client and block biases during the collaborative training: the single global model would be biased towards the client or block specific data. To overcome the biases, we propose two new distributed optimization algorithms called multi-model parallel SGD (MM-PSGD) and multi-chain parallel SGD (MC-PSGD) with a convergence rate of $O(1/sqrt{NT})$, achieving a linear speedup with respect to the total number of clients. In particular, MM-PSGD adopts the block-mixed training strategy, while MC-PSGD further adds the block-separate training strategy. Both algorithms create a specific predictor for each block by averaging and comparing the historical global models generated in this block from different cycles. We extensively evaluate our algorithms over the CIFAR-10 dataset. Evaluation results demonstrate that our algorithms significantly outperform the conventional federated averaging algorithm in terms of test accuracy, and also preserve robustness for the variance of critical parameters.
Various bias-correction methods such as EXTRA, gradient tracking methods, and exact diffusion have been proposed recently to solve distributed {em deterministic} optimization problems. These methods employ constant step-sizes and converge linearly to the {em exact} solution under proper conditions. However, their performance under stochastic and adaptive settings is less explored. It is still unknown {em whether}, {em when} and {em why} these bias-correction methods can outperform their traditional counterparts (such as consensus and diffusion) with noisy gradient and constant step-sizes. This work studies the performance of exact diffusion under the stochastic and adaptive setting, and provides conditions under which exact diffusion has superior steady-state mean-square deviation (MSD) performance than traditional algorithms without bias-correction. In particular, it is proven that this superiority is more evident over sparsely-connected network topologies such as lines, cycles, or grids. Conditions are also provided under which exact diffusion method match or may even degrade the performance of traditional methods. Simulations are provided to validate the theoretical findings.
We study asynchronous finite sum minimization in a distributed-data setting with a central parameter server. While asynchrony is well understood in parallel settings where the data is accessible by all machines -- e.g., modifications of variance-reduced gradient algorithms like SAGA work well -- little is known for the distributed-data setting. We develop an algorithm ADSAGA based on SAGA for the distributed-data setting, in which the data is partitioned between many machines. We show that with $m$ machines, under a natural stochastic delay model with an mean delay of $m$, ADSAGA converges in $tilde{O}left(left(n + sqrt{m}kapparight)log(1/epsilon)right)$ iterations, where $n$ is the number of component functions, and $kappa$ is a condition number. This complexity sits squarely between the complexity $tilde{O}left(left(n + kapparight)log(1/epsilon)right)$ of SAGA textit{without delays} and the complexity $tilde{O}left(left(n + mkapparight)log(1/epsilon)right)$ of parallel asynchronous algorithms where the delays are textit{arbitrary} (but bounded by $O(m)$), and the data is accessible by all. Existing asynchronous algorithms with distributed-data setting and arbitrary delays have only been shown to converge in $tilde{O}(n^2kappalog(1/epsilon))$ iterations. We empirically compare on least-squares problems the iteration complexity and wallclock performance of ADSAGA to existing parallel and distributed algorithms, including synchronous minibatch algorithms. Our results demonstrate the wallclock advantage of variance-reduced asynchronous approaches over SGD or synchronous approaches.
Stochastic gradient descent (SGD) has taken the stage as the primary workhorse for large-scale machine learning. It is often used with its adaptive variants such as AdaGrad, Adam, and AMSGrad. This paper proposes an adaptive stochastic gradient descent method for distributed machine learning, which can be viewed as the communication-adaptive counterpart of the celebrated Adam method - justifying its name CADA. The key components of CADA are a set of new rules tailored for adaptive stochastic gradients that can be implemented to save communication upload. The new algorithms adaptively reuse the stale Adam gradients, thus saving communication, and still have convergence rates comparable to original Adam. In numerical experiments, CADA achieves impressive empirical performance in terms of total communication round reduction.
Large-scale distributed training of neural networks is often limited by network bandwidth, wherein the communication time overwhelms the local computation time. Motivated by the success of sketching methods in sub-linear/streaming algorithms, we introduce Sketched SGD, an algorithm for carrying out distributed SGD by communicating sketches instead of full gradients. We show that Sketched SGD has favorable convergence rates on several classes of functions. When considering all communication -- both of gradients and of updated model weights -- Sketched SGD reduces the amount of communication required compared to other gradient compression methods from $mathcal{O}(d)$ or $mathcal{O}(W)$ to $mathcal{O}(log d)$, where $d$ is the number of model parameters and $W$ is the number of workers participating in training. We run experiments on a transformer model, an LSTM, and a residual network, demonstrating up to a 40x reduction in total communication cost with no loss in final model performance. We also show experimentally that Sketched SGD scales to at least 256 workers without increasing communication cost or degrading model performance.
In the last few years, various communication compression techniques have emerged as an indispensable tool helping to alleviate the communication bottleneck in distributed learning. However, despite the fact {em biased} compressors often show superior performance in practice when compared to the much more studied and understood {em unbiased} compressors, very little is known about them. In this work we study three classes of biased compression operators, two of which are new, and their performance when applied to (stochastic) gradient descent and distributed (stochastic) gradient descent. We show for the first time that biased compressors can lead to linear convergence rates both in the single node and distributed settings. Our {em distributed} SGD method enjoys the ergodic rate $mathcal{O}left(frac{delta L exp(-K) }{mu} + frac{(C + D)}{Kmu}right)$, where $delta$ is a compression parameter which grows when more compression is applied, $L$ and $mu$ are the smoothness and strong convexity constants, $C$ captures stochastic gradient noise ($C=0$ if full gradients are computed on each node) and $D$ captures the variance of the gradients at the optimum ($D=0$ for over-parameterized models). Further, via a theoretical study of several synthetic and empirical distributions of communicated gradients, we shed light on why and by how much biased compressors outperform their unbiased variants. Finally, we propose a new highly performing biased compressor---combination of Top-$k$ and natural dithering---which in our experiments outperforms all other compression techniques.