Do you want to publish a course? Click here

MILA: Multi-Task Learning from Videos via Efficient Inter-Frame Local Attention

316   0   0.0 ( 0 )
 Added by Donghyun Kim
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Prior work in multi-task learning has mainly focused on predictions on a single image. In this work, we present a new approach for multi-task learning from videos via efficient inter-frame local attention (MILA). Our approach contains a novel inter-frame attention module which allows learning of task-specific attention across frames. We embed the attention module in a ``slow-fast architecture, where the slower network runs on sparsely sampled keyframes and the light-weight shallow network runs on non-keyframes at a high frame rate. We also propose an effective adversarial learning strategy to encourage the slow and fast network to learn similar features. Our approach ensures low-latency multi-task learning while maintaining high quality predictions. Experiments show competitive accuracy compared to state-of-the-art on two multi-task learning benchmarks while reducing the number of floating point operations (FLOPs) by up to 70%. In addition, our attention based feature propagation method (ILA) outperforms prior work in terms of task accuracy while also reducing up to 90% of FLOPs.



rate research

Read More

Detecting manipulated images and videos is an important topic in digital media forensics. Most detection methods use binary classification to determine the probability of a query being manipulated. Another important topic is locating manipulated regions (i.e., performing segmentation), which are mostly created by three commonly used attacks: removal, copy-move, and splicing. We have designed a convolutional neural network that uses the multi-task learning approach to simultaneously detect manipulated images and videos and locate the manipulated regions for each query. Information gained by performing one task is shared with the other task and thereby enhance the performance of both tasks. A semi-supervised learning approach is used to improve the networks generability. The network includes an encoder and a Y-shaped decoder. Activation of the encoded features is used for the binary classification. The output of one branch of the decoder is used for segmenting the manipulated regions while that of the other branch is used for reconstructing the input, which helps improve overall performance. Experiments using the FaceForensics and FaceForensics++ databases demonstrated the networks effectiveness against facial reenactment attacks and face swapping attacks as well as its ability to deal with the mismatch condition for previously seen attacks. Moreover, fine-tuning using just a small amount of data enables the network to deal with unseen attacks.
Analyzing and understanding hand information from multimedia materials like images or videos is important for many real world applications and remains active in research community. There are various works focusing on recovering hand information from single image, however, they usually solve a single task, for example, hand mask segmentation, 2D/3D hand pose estimation, or hand mesh reconstruction and perform not well in challenging scenarios. To further improve the performance of these tasks, we propose a novel Hand Image Understanding (HIU) framework to extract comprehensive information of the hand object from a single RGB image, by jointly considering the relationships between these tasks. To achieve this goal, a cascaded multi-task learning (MTL) backbone is designed to estimate the 2D heat maps, to learn the segmentation mask, and to generate the intermediate 3D information encoding, followed by a coarse-to-fine learning paradigm and a self-supervised learning strategy. Qualitative experiments demonstrate that our approach is capable of recovering reasonable mesh representations even in challenging situations. Quantitatively, our method significantly outperforms the state-of-the-art approaches on various widely-used datasets, in terms of diverse evaluation metrics.
Multi-task learning is an open and challenging problem in computer vision. The typical way of conducting multi-task learning with deep neural networks is either through handcrafted schemes that share all initial layers and branch out at an adhoc point, or through separate task-specific networks with an additional feature sharing/fusion mechanism. Unlike existing methods, we propose an adaptive sharing approach, called AdaShare, that decides what to share across which tasks to achieve the best recognition accuracy, while taking resource efficiency into account. Specifically, our main idea is to learn the sharing pattern through a task-specific policy that selectively chooses which layers to execute for a given task in the multi-task network. We efficiently optimize the task-specific policy jointly with the network weights, using standard back-propagation. Experiments on several challenging and diverse benchmark datasets with a variable number of tasks well demonstrate the efficacy of our approach over state-of-the-art methods. Project page: https://cs-people.bu.edu/sunxm/AdaShare/project.html.
Deep learning has made significant impacts on multi-view stereo systems. State-of-the-art approaches typically involve building a cost volume, followed by multiple 3D convolution operations to recover the input images pixel-wise depth. While such end-to-end learning of plane-sweeping stereo advances public benchmarks accuracy, they are typically very slow to compute. We present MVS2D, a highly efficient multi-view stereo algorithm that seamlessly integrates multi-view constraints into single-view networks via an attention mechanism. Since MVS2D only builds on 2D convolutions, it is at least 4x faster than all the notable counterparts. Moreover, our algorithm produces precise depth estimations, achieving state-of-the-art results on challenging benchmarks ScanNet, SUN3D, and RGBD. Even under inexact camera poses, our algorithm still out-performs all other algorithms. Supplementary materials and code will be available at the project page: https://zhenpeiyang.github.io/MVS2D
306 - Chao Hu , Fan Wu , Weijie Wu 2021
Frame reconstruction (current or future frame) based on Auto-Encoder (AE) is a popular method for video anomaly detection. With models trained on the normal data, the reconstruction errors of anomalous scenes are usually much larger than those of normal ones. Previous methods introduced the memory bank into AE, for encoding diverse normal patterns across the training videos. However, they are memory consuming and cannot cope with unseen new scenarios in the testing data. In this work, we propose a self-attention prototype unit (APU) to encode the normal latent space as prototypes in real time, free from extra memory cost. In addition, we introduce circulative attention mechanism to our backbone to form a novel feature extracting learner, namely Circulative Attention Unit (CAU). It enables the fast adaption capability on new scenes by only consuming a few iterations of update. Extensive experiments are conducted on various benchmarks. The superior performance over the state-of-the-art demonstrates the effectiveness of our method. Our code is available at https://github.com/huchao-AI/APN/.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا