Do you want to publish a course? Click here

Learning models of quantum systems from experiments

111   0   0.0 ( 0 )
 Added by Brian Flynn
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

An isolated system of interacting quantum particles is described by a Hamiltonian operator. Hamiltonian models underpin the study and analysis of physical and chemical processes throughout science and industry, so it is crucial they are faithful to the system they represent. However, formulating and testing Hamiltonian models of quantum systems from experimental data is difficult because it is impossible to directly observe which interactions the quantum system is subject to. Here, we propose and demonstrate an approach to retrieving a Hamiltonian model from experiments, using unsupervised machine learning. We test our methods experimentally on an electron spin in a nitrogen-vacancy interacting with its spin bath environment, and numerically, finding success rates up to 86%. By building agents capable of learning science, which recover meaningful representations, we can gain further insight on the physics of quantum systems.



rate research

Read More

The design of new devices and experiments in science and engineering has historically relied on the intuitions of human experts. This credo, however, has changed. In many disciplines, computer-inspired design processes, also known as inverse-design, have augmented the capability of scientists. Here we visit different fields of physics in which computer-inspired designs are applied. We will meet vastly diverse computational approaches based on topological optimization, evolutionary strategies, deep learning, reinforcement learning or automated reasoning. Then we draw our attention specifically on quantum physics. In the quest for designing new quantum experiments, we face two challenges: First, quantum phenomena are unintuitive. Second, the number of possible configurations of quantum experiments explodes combinatorially. To overcome these challenges, physicists began to use algorithms for computer-designed quantum experiments. We focus on the most mature and textit{practical} approaches that scientists used to find new complex quantum experiments, which experimentalists subsequently have realized in the laboratories. The underlying idea is a highly-efficient topological search, which allows for scientific interpretability. In that way, some of the computer-designs have led to the discovery of new scientific concepts and ideas -- demonstrating how computer algorithm can genuinely contribute to science by providing unexpected inspirations. We discuss several extensions and alternatives based on optimization and machine learning techniques, with the potential of accelerating the discovery of practical computer-inspired experiments or concepts in the future. Finally, we discuss what we can learn from the different approaches in the fields of physics, and raise several fascinating possibilities for future research.
84 - Sam McArdle 2020
Computational physics is an important tool for analysing, verifying, and -- at times -- replacing physical experiments. Nevertheless, simulating quantum systems and analysing quantum data has so far resisted an efficient classical treatment in full generality. While programmable quantum systems have been developed to address this challenge, the resources required for classically intractable problems still lie beyond our reach. In this work, we consider a new target for quantum simulation algorithms; analysing the data arising from physics experiments -- specifically, muon spectroscopy experiments. These experiments can be used to probe the quantum interactions present in condensed matter systems. However, fully analysing their results can require classical computational resources scaling exponentially with the simulated system size, which can limit our understanding of the studied system. We show that this task may be a natural fit for the coming generations of quantum computers. We use classical emulations of our quantum algorithm on systems of up to 29 qubits to analyse real experimental data, and to estimate both the near-term and error corrected resources required for our proposal. We find that our algorithm exhibits good noise resilience, stemming from our desire to extract global parameters from a fitted curve, rather than targeting any individual data point. In some respects, our resource estimates go further than some prior work in quantum simulation, by estimating the resources required to solve a complete task, rather than just to run a given circuit. Taking the overhead of observable measurement and calculating multiple datapoints into account, we find that significant challenges still remain if our algorithm is to become practical for analysing muon spectroscopy data.
In this paper, we develop a theory of learning nonlinear input-output maps with fading memory by dissipative quantum systems, as a quantum counterpart of the theory of approximating such maps using classical dynamical systems. The theory identifies the properties required for a class of dissipative quantum systems to be {em universal}, in that any input-output map with fading memory can be approximated arbitrarily closely by an element of this class. We then introduce an example class of dissipative quantum systems that is provably universal. Numerical experiments illustrate that with a small number of qubits, this class can achieve comparable performance to classical learning schemes with a large number of tunable parameters. Further numerical analysis suggests that the exponentially increasing Hilbert space presents a potential resource for dissipative quantum systems to surpass classical learning schemes for input-output maps.
136 - Daoyi Dong 2021
This paper provides a brief introduction to learning control of quantum systems. In particular, the following aspects are outlined, including gradient-based learning for optimal control of quantum systems, evolutionary computation for learning control of quantum systems, learning-based quantum robust control, and reinforcement learning for quantum control.
We demonstrate how quantum computation can provide non-trivial improvements in the computational and statistical complexity of the perceptron model. We develop two quantum algorithms for perceptron learning. The first algorithm exploits quantum information processing to determine a separating hyperplane using a number of steps sublinear in the number of data points $N$, namely $O(sqrt{N})$. The second algorithm illustrates how the classical mistake bound of $O(frac{1}{gamma^2})$ can be further improved to $O(frac{1}{sqrt{gamma}})$ through quantum means, where $gamma$ denotes the margin. Such improvements are achieved through the application of quantum amplitude amplification to the version space interpretation of the perceptron model.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا