Do you want to publish a course? Click here

Light by Light Scattering as a New Probe for Axions

342   0   0.0 ( 0 )
 Added by Soroush Shakeri
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the impact of virtual axions on the polarization of photons inside a cavity during the interaction of high-power laser pulses. A novel detection scheme for measuring the axion-induced ellipticity signal during the Light-by-Light (LBL) scattering process is investigated. We show that a momentum exchange between photons in a probe laser beam and a high-intensity target beam may lead to a resonance at the physical mass of the axion. Consequently, the resonant enhancement of vacuum birefringence gives rise to a large ellipticity signal. This signal enhancement can be applied in order to discriminate between the axion contribution to LBL scattering and the standard model contribution due to electron-positron pairs. The sensitivity of the scheme is studied for experimentally feasible probe light sources and ultrahigh intensity laser backgrounds. It is shown that this technique has the potential to probe the QCD axion in the mass range $10^{-2} textrm{eV} lesssim m_{a} lesssim 1 textrm{eV}$. In this region the axion induced signal surpasses the standard model background.



rate research

Read More

63 - Jihn E. Kim 2021
We discuss the energy scales of the explicit breaking terms of the global symmetries USW~ needed for the quinessential axion (QA) and the ultra-light axion (ULA). The appropriate scale of QA is about $10^{8}$ GeV.
400 - Yuri Shtanov 2021
A new cosmological scenario is proposed in which a light scalaron of $f (R)$ gravity plays the role of dark matter. In this scenario, the scalaron initially resides at the minimum of its effective potential while the electroweak symmetry is unbroken. At the beginning of the electroweak crossover, the evolving expectation value of the Higgs field triggers the evolution of the scalaron due to interaction between these fields. After the electroweak crossover, the oscillating scalaron can represent cold dark matter. Its current energy density depends on a single free parameter, the scalaron mass $m$, and the value $m simeq 4 times 10^{-3}, text{eV}$ is required to explain the observed dark-matter abundance. Larger mass values would be required in scenarios where the scalaron is excited before the electroweak crossover.
In this third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon $(g-2)_mu$, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of $gamma^*gamma^*topipi$. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, $a_mu^{pitext{-box}}=-15.9(2)times 10^{-11}$. As an application of the partial-wave formalism, we present a first calculation of $pipi$-rescattering effects in HLbL scattering, with $gamma^*gamma^*topipi$ helicity partial waves constructed dispersively using $pipi$ phase shifts derived from the inverse-amplitude method. In this way, the isospin-$0$ part of our calculation can be interpreted as the contribution of the $f_0(500)$ to HLbL scattering in $(g-2)_mu$. We argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its $S$-wave rescattering corrections reads $a_mu^{pitext{-box}} + a_{mu,J=0}^{pipi,pitext{-pole LHC}}=-24(1)times 10^{-11}$.
We describe and present the first observational evidence that light propagating near a rotating black hole is twisted in phase and carries orbital angular momentum. The novel use of this physical observable as an additional tool for the previously known techniques of gravitational lensing allows us to directly measure, for the first time, the spin parameter of a black hole. With the additional information encoded in the orbital angular momentum, not only can we reveal the actual rotation of the compact object, but we can also use rotating black holes as probes to test General Relativity.
153 - Andreas Nyffeler 2009
We summarize our recent new evaluation of the pion-exchange contribution to hadronic light-by-light scattering in the muon g-2. We first derive a new short-distance constraint on the off-shell pion-photon-photon form factor at the external vertex in a_mu which relates the form factor to the quark condensate magnetic susceptibility in QCD. We then evaluate the pion-exchange contribution in the framework of large-N_C QCD using an off-shell form factor which fulfills all short-distance constraints and obtain the new estimate a_{mu}(LbyL;pi^0) = (72 pm 12) x 10^{-11}. Updating our earlier results for the contributions from the exchanges of the eta and eta-prime using simple vector-meson dominance form factors, we get a_{mu}(LbyL; PS) = (99 pm 16) x 10^{-11} for the sum of all light pseudoscalars. Combined with available evaluations for the other contributions to hadronic light-by-light scattering this leads to the estimate a_{mu}(LbyL; had) = (116 pm 40) x 10^{-11}. The corresponding contributions to the anomalous magnetic moment of the electron are also given.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا