Do you want to publish a course? Click here

Many-body radiative heat pumping

81   0   0.0 ( 0 )
 Added by Riccardo Messina
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a local radiative heat-pumping effect between two bodies in a many-body system, obtained by periodically modulating both the temperature and the position of an intermediate object using an external source of energy. We show that the magnitude and the sign of energy flow can be tuned by changing the oscillation amplitude and dephasing of the two parameters. This many-body effect paves the way for an efficient and active control of heat fluxes at the nanoscale.



rate research

Read More

Many-body physics aims to understand emergent properties of systems made of many interacting objects. This article reviews recent progress on the topic of radiative heat transfer in many-body systems consisting of thermal emitters interacting in the near-field regime. Near-field radiative heat transfer is a rapidly emerging field of research in which the cooperative behavior of emitters gives rise to peculiar effects which can be exploited to control heat flow at the nanoscale. Using an extension of the standard Polder and van Hove stochastic formalism to deal with thermally generated fields in $N$-body systems, along with their mutual interactions through multiple scattering, a generalized Landauer-like theory is derived to describe heat exchange mediated by thermal photons in arbitrary reciprocal and non-reciprocal multi-terminal systems. In this review, we use this formalism to address both transport and dynamics in these systems from a unified perspective. Our discussion covers: (i) the description of non-additivity of heat flux and its related effects, including fundamental limits as well as the role of nanostructuring and material choice, (ii) the study of equilibrium states and multistable states, (iii) the relaxation dynamics (thermalization) toward local and global equilibria, (iv) the analysis of heat transport regimes in ordered and disordered systems comprised of a large number of objects, density and range of interactions, and (v) the description of thermomagnetic effects in magneto-optical systems and heat transport mechanisms in non-Hermitian many-body systems. We conclude this review by listing outstanding challenges and promising future research directions.
Radiative heat transfer between two bodies saturates at very short separation distances due to the nonlocal optical response of the materials. In this work, we show that the presence of radiative interactions with a third body or external bath can also induce a saturation of the heat transfer, even at separation distances for which the optical response of the materials is purely local. We demonstrate that this saturation mechanism is a direct consequence of a thermalization process resulting from many-body interactions in the system. This effect could have an important impact in the field of nanoscale thermal management of complex systems and in the interpretation of measured signals in thermal metrology at the nanoscale.
Radiative thermal diodes based on two-element structures rectify heat flows thanks to a temperature dependence of material optical properties. The heat transport asymmetry through these systems, however, remains weak without a significant change in material properties with the temperature. Here we explore the heat transport in three-element radiative systems and demonstrate that a strong asymmetry in the thermal conductance can appear because of many-body interactions, without any dependence of optical properties on the temperature. The analysis of transport in three-body systems made with polar dielectrics and metallic layers reveals that rectification coefficients exceeding 50 % can be achieved in the near-field regime with temperature differences of about 200 K. This work paves the way for compact devices to rectify near field radiative heat fluxes over a broad temperature range and could have important applications in the domain of nanoscale thermal management.
A general theory of photon-mediated energy and momentum transfer in N-body planar systems out of thermal equilibrium is introduced. It is based on the combination of the scattering theory and the fluctuational-electrodynamics approach in many-body systems. By making a Landauer-like formulation of the heat transfer problem, explicit formulas for the energy transmission coefficients between two distinct slabs as well as the self-coupling coefficients are derived and expressed in terms of the reflection and transmission coefficients of the single bodies. We also show how to calculate local equilibrium temperatures in such systems. An analogous formulation is introduced to quantify momentum transfer coefficients describing Casimir-Lifshitz forces out of thermal equilibrium. Forces at thermal equilibrium are readily obtained as a particular case. As an illustration of this general theoretical framework, we show on three-body systems how the presence of a fourth slab can impact equilibrium temperatures in heat-transfer problems and equilibrium positions resulting from the forces acting on the system.
In dense systems composed of numerous nanoparticles, direct simulations of near-field radiative heat transfer (NFRHT) require considerable computational resources. NFRHT for the simple one-dimensional nanoparticle chains embedded in a non-absorbing host medium is investigated from the point of view of the continuum by means of an approach combining the many-body radiative heat transfer theory and the Fourier law. Effects of the phase change of the insulator-metal transition material (VO$_2$), the complex many-body interaction (MBI) and the host medium relative permittivity on the characteristic effective thermal conductivity (ETC) are analyzed. The ETC for VO$_2$ nanoparticle chains below the transition temperature can be as high as 50 times of that above the transition temperature due to the phase change effect. The strong coupling in the insulator-phase VO$_2$ nanoparticle chain accounts for its high ETC as compared to the low ETC for the chain at the metallic phase, where there is a mismatch between the characteristic thermal frequency and resonance frequency. The strong MBI is in favor of the ETC. For SiC nanoparticle chains, the MBI even can double the ETC as compared to those without considering the MBI effect. For the dense chains, a strong MBI enhances the ETC due to the strong inter-particles couplings. When the chains go more and more dilute, the MBI can be neglected safely due to negligible couplings. The host medium relative permittivity significantly affects the inter-particles couplings, which accounts for the permittivity-dependent ETC for the VO$_2$ nanoparticle chains.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا