Do you want to publish a course? Click here

Ungauging Schemes and Coulomb Branches of Non-simply Laced Quiver Theories

72   0   0.0 ( 0 )
 Added by Anton Zajac Mr.
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Three-dimensional Coulomb branches have a prominent role in the study of moduli spaces of supersymmetric gauge theories with $8$ supercharges in $3,4,5$, and $6$ dimensions. Inspired by simply laced $3$d $mathcal{N}=4$ supersymmetric quiver gauge theories, we consider Coulomb branches constructed from non-simply laced quivers with edge multiplicity $k$ and no flavor nodes. In a computation of the Coulomb branch as the space of dressed monopole operators, a center-of-mass $U(1)$ symmetry needs to be ungauged. Typically, for a simply laced theory, all choices of the ungauged $U(1)$ (i.e. all choices of ungauging schemes) are equivalent and the Coulomb branch is unique. In this note, we study various ungauging schemes and their effect on the resulting Coulomb branch variety. It is shown that, for a non-simply laced quiver, inequivalent ungauging schemes exist which correspond to inequivalent Coulomb branch varieties. Ungauging on any of the long nodes of a non-simply laced quiver yields the same Coulomb branch $mathcal{C}$. For choices of ungauging the $U(1)$ on a short node of rank higher than $1$, the GNO dual magnetic lattice deforms such that it no longer corresponds to a Lie group, and therefore, the monopole formula yields a non-valid Coulomb branch. However, if the ungauging is performed on a short node of rank $1$, the one-dimensional magnetic lattice is rescaled conformally along its single direction and the corresponding Coulomb branch is an orbifold of the form $mathcal{C}/mathbb{Z}_k$. Ungauging schemes of $3$d Coulomb branches provide a particularly interesting and intuitive description of a subset of actions on the nilpotent orbits studied by Kostant and Brylinski arXiv:math/9204227. The ungauging scheme analysis is carried out for minimally unbalanced $C_n$, affine $F_4$, affine $G_2$, and twisted affine $D_4^{(3)}$ quivers, respectively.



rate research

Read More

65 - M. Billo , M. Frau , F. Fucito 2015
We derive a modular anomaly equation satisfied by the prepotential of the N=2* supersymmetric theories with non-simply laced gauge algebras, including the classical B and C infinite series and the exceptional F4 and G2 cases. This equation determines the exact prepotential recursively in an expansion for small mass in terms of quasi-modular forms of the S-duality group. We also discuss the behaviour of these theories under S-duality and show that the prepotential of the SO(2r+1) theory is mapped to that of the Sp(2r) theory and viceversa, while the exceptional F4 and G2 theories are mapped into themselves (up to a rotation of the roots) in analogy with what happens for the N=4 supersymmetric theories. These results extend the analysis for the simply laced groups presented in a companion paper.
Let $mathscr{A}_q$ be the $K$-theoretic Coulomb branch of a $3d$ $mathcal{N}=4$ quiver gauge theory with quiver $Gamma$, and $mathscr{A}_q subseteq mathscr{A}_q$ be the subalgebra generated by the equivariant $K$-theory of a point together with the dressed minuscule monopole operators $M_{varpi_{i,1},f}$ and $M_{varpi^*_{i,1},f}$. In this paper, we construct an associated cluster algebra quiver $mathcal{Q}_Gamma$ and provide an embedding of the subalgebra $mathscr{A}_q$ into the quantized algebra of regular functions on the corresponding cluster variety.
We study quantized Coulomb branches of quiver gauge theories of Jordan type. We prove that the quantized Coulomb branch is isomorphic to the spherical graded Cherednik algebra in the unframed case, and is isomorphic to the spherical cyclotomic rational Cherednik algebra in the framed case. We also prove that the quantized Coulomb branch is a deformation of a subquotient of the Yangian of the affine $mathfrak{gl}(1)$.
97 - P.R. Johnson 1996
Exact solutions to the quantum S-matrices for solitons in simply-laced affine Toda field theories are obtained, except for certain factors of simple type which remain undetermined in some cases. These are found by postulating solutions which are consistent with the semi-classical limit, $hbarrightarrow 0$, and the known time delays for a classical two soliton interaction. This is done by a `$q$-deformation procedure, to move from the classical time delay to the exact S-matrix, by inserting a special function called the `regularised quantum dilogarithm, which only holds when $|q|=1$. It is then checked that the solutions satisfy the crossing, unitarity and bootstrap constraints of S-matrix theory. These properties essentially follow from analogous properties satisfied by the classical time delay. Furthermore, the lowest mass breather S-matrices are computed by the bootstrap, and it is shown that these agree with the particle S-matrices known already in the affine Toda field theories, in all simply-laced cases.
We study the classification of 2-dimensional scale-invariant rigid special Kahler (RSK) geometries, which potentially describe the Coulomb branches of N=2 supersymmetric field theories in four dimensions. We show that this classification is equivalent to the solution of a set of polynomial equations by using an integrability condition for the central charge, scale invariance, constraints coming from demanding single-valuedness of physical quantities on the Coulomb branch, and properties of massless BPS states at singularities. We find solutions corresponding to lagrangian scale invariant theories--including the scale invariant G_2 theory not found before in the literature--as well as many new isolated solutions (having no marginal deformations). All our scale-invariant RSK geometries are consistent with an interpretation as effective theories of N=2 superconformal field theories, and, where we can check, turn out to exist as quantum field theories.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا