Do you want to publish a course? Click here

Politics of Adversarial Machine Learning

126   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In addition to their security properties, adversarial machine-learning attacks and defenses have political dimensions. They enable or foreclose certain options for both the subjects of the machine learning systems and for those who deploy them, creating risks for civil liberties and human rights. In this paper, we draw on insights from science and technology studies, anthropology, and human rights literature, to inform how defenses against adversarial attacks can be used to suppress dissent and limit attempts to investigate machine learning systems. To make this concrete, we use real-world examples of how attacks such as perturbation, model inversion, or membership inference can be used for socially desirable ends. Although the predictions of this analysis may seem dire, there is hope. Efforts to address human rights concerns in the commercial spyware industry provide guidance for similar measures to ensure ML systems serve democratic, not authoritarian ends



rate research

Read More

387 - Kyla Chasalow , Karen Levy 2021
Representativeness is a foundational yet slippery concept. Though familiar at first blush, it lacks a single precise meaning. Instead, meanings range from typical or characteristic, to a proportionate match between sample and population, to a more general sense of accuracy, generalizability, coverage, or inclusiveness. Moreover, the concept has long been contested. In statistics, debates about the merits and methods of selecting a representative sample date back to the late 19th century; in politics, debates about the value of likeness as a logic of political representation are older still. Today, as the concept crops up in the study of fairness and accountability in machine learning, we need to carefully consider the terms meanings in order to communicate clearly and account for their normative implications. In this paper, we ask what representativeness means, how it is mobilized socially, and what values and ideals it communicates or confronts. We trace the concepts history in statistics and discuss normative tensions concerning its relationship to likeness, exclusion, authority, and aspiration. We draw on these analyses to think through how representativeness is used in FAccT debates, with emphasis on data, shift, participation, and power.
We present an automated method for measuring media bias. Inferring which newspaper published a given article, based only on the frequencies with which it uses different phrases, leads to a conditional probability distribution whose analysis lets us automatically map newspapers and phrases into a bias space. By analyzing roughly a million articles from roughly a hundred newspapers for bias in dozens of news topics, our method maps newspapers into a two-dimensional bias landscape that agrees well with previous bias classifications based on human judgement. One dimension can be interpreted as traditional left-right bias, the other as establishment bias. This means that although news bias is inherently political, its measurement need not be.
Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.
Bias in machine learning has manifested injustice in several areas, such as medicine, hiring, and criminal justice. In response, computer scientists have developed myriad definitions of fairness to correct this bias in fielded algorithms. While some definitions are based on established legal and ethical norms, others are largely mathematical. It is unclear whether the general public agrees with these fairness definitions, and perhaps more importantly, whether they understand these definitions. We take initial steps toward bridging this gap between ML researchers and the public, by addressing the question: does a lay audience understand a basic definition of ML fairness? We develop a metric to measure comprehension of three such definitions--demographic parity, equal opportunity, and equalized odds. We evaluate this metric using an online survey, and investigate the relationship between comprehension and sentiment, demographics, and the definition itself.
Adversarial examples are perturbed inputs that are designed (from a deep learning networks (DLN) parameter gradients) to mislead the DLN during test time. Intuitively, constraining the dimensionality of inputs or parameters of a network reduces the space in which adversarial examples exist. Guided by this intuition, we demonstrate that discretization greatly improves the robustness of DLNs against adversarial attacks. Specifically, discretizing the input space (or allowed pixel levels from 256 values or 8-bit to 4 values or 2-bit) extensively improves the adversarial robustness of DLNs for a substantial range of perturbations for minimal loss in test accuracy. Furthermore, we find that Binary Neural Networks (BNNs) and related variants are intrinsically more robust than their full precision counterparts in adversarial scenarios. Combining input discretization with BNNs furthers the robustness even waiving the need for adversarial training for certain magnitude of perturbation values. We evaluate the effect of discretization on MNIST, CIFAR10, CIFAR100 and Imagenet datasets. Across all datasets, we observe maximal adversarial resistance with 2-bit input discretization that incurs an adversarial accuracy loss of just ~1-2% as compared to clean test accuracy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا