Do you want to publish a course? Click here

Dust Devils on Titan

217   0   0.0 ( 0 )
 Added by Brian Jackson
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Conditions on Saturns moon Titan suggest dust devils, which are convective, dust-laden plumes, may be active. Although the exact nature of dust on Titan is unclear, previous observations confirm an active aeolian cycle, and dust devils may play an important role in Titans aeolian cycle, possibly contributing to regional transport of dust and even production of sand grains. The Dragonfly mission to Titan will document dust devil and convective vortex activity and thereby provide a new window into these features, and our analysis shows that associated winds are likely to be modest and pose no hazard to the mission.



rate research

Read More

The atmosphere of Titan, the largest moon of Saturn, is rich in organic molecules, and it has been suggested that the moon may serve as an analog for the pre-biotic Earth due to its highly reducing chemistry and existence of global hazes. Photochemical models of Titan have predicted the presence of propadiene (historically referred to as allene), CH$_{2}$CCH$_{2}$, an isomer of the well-measured propyne (also called methylacetylene) CH$_{3}$CCH, but its detection has remained elusive due to insufficient spectroscopic knowledge of the molecule - which has recently been remedied with an updated spectral line list. Here we present the first unambiguous detection of the molecule in any astronomical object, observed with the Texas Echelle Cross Echelle Spectrograph (TEXES) on the NASA Infrared Telescope Facility (IRTF) in July 2017. We model its emission line near 12 $mu$m and measure a volume mixing ratio (VMR) of (6.9 $pm$ 0.8) $times$10$^{-10}$ at 175 km, assuming a vertically increasing abundance profile as predicted in photochemical models. Cassini measurements of propyne made during April 2017 indicate that the abundance ratio of propyne to propadiene is 8.2$pm$1.1 at the same altitude. This initial measurement of the molecule in Titans stratosphere paves the way towards constraining the amount of atomic hydrogen available on Titan, as well as future mapping of propadiene on Titan from 8 meter and larger ground based observatories, and future detection on other planetary bodies.
Winds in Titans lower and middle atmosphere have been determined by a variety of techniques, including direct measurements from the Huygens Probe over 0-150 km, Doppler shifts of molecular spectral lines in the optical, thermal infrared and mm ranges, probing altogether the ~100-450 km altitude range, and inferences from thermal field over 10 mbar - 10 -3 mbar (i.e. ~100-500 km) and from central flashes in stellar occultation curves. These measurements predominantly indicated strong prograde winds, reaching maximum speeds of ~150-200 m/s in the upper stratosphere, with important latitudinal and seasonal variations. However, these observations provided incomplete atmospheric sounding; in particular, the wind regime in Titans upper mesosphere and thermosphere (500- 1200 km) has remained unconstrained so far. Here we report direct wind measurements based on Doppler shifts of six molecular species observed with ALMA. We show that unlike expectations, strong prograde winds extend up to the thermosphere, with the circulation progressively turning into an equatorial jet regime as altitude increases, reaching ~340 m/s at 1000 km. We suggest that these winds may represent the dynamical response of forcing by waves launched at upper stratospheric/mesospheric levels and/or magnetospheric-ionospheric interaction. We also demonstrate that the HNC distribution is restricted to Titans thermosphere above ~870 km altitude.
We retrieve vertical and meridional variations of methane mole fraction in Titans lower troposphere by re-analyzing near-infrared ground-based observations from 17 July 2014 UT (Adamkovics et al., 2016). We generate synthetic spectra using atmospheric methane profiles that do not contain supersaturation or discontinuities to fit the observations, and thereby retrieve minimum saturation altitudes and corresponding specific humidities in the boundary layer. We relate these in turn to surface-level relative humidities using independent surface temperature measurements. We also compare our results with general circulation model simulations to interpret and constrain the relationship between humidities and surface liquids. The results show that Titans lower troposphere is undersaturated at latitudes south of 60N, consistent with a dry surface there, but increases in humidity toward the north pole indicate appreciable surface liquid coverage. While our observations are consistent with considerably more liquid methane existing at the north pole than is present in observed lakes, a degeneracy between low-level methane and haze leads to substantial uncertainty in determining the extent of the source region.
We report the first detection on Titan of the small cyclic molecule cyclopropenylidene (c-C3H2) from high sensitivity spectroscopic observations made with the Atacama Large Millimeter/sub-millimeter Array (ALMA). Multiple lines of cyclopropenylidene were detected in two separate datasets: ~251 GHz in 2016 (Band 6) and ~352 GHz in 2017 (Band 7). Modeling of these emissions indicates abundances of 0.50 +/- 0.14 ppb (2016) and 0.28 +/- 0.08 (2017) for a 350 km step model, which may either signify a decrease in abundance, or a mean value of 0.33 +/- 0.07 ppb. Inferred column abundances are (3-5)E12 cm-2 in 2016 and (1-2)E12 cm-2 in 2017, similar to photochemical model predictions. Previously the C3H3+ ion has been measured in Titans ionosphere by Cassinis Ion and Neutral Mass Spectrometer (INMS), but the neutral (unprotonated) species has not been detected until now, and aromatic versus aliphatic structure could not be determined by the INMS. Our work therefore represents the first unambiguous detection of cyclopropenylidene, the second known cyclic molecule in Titans atmosphere along with benzene (C6H6) and the first time this molecule has been detected in a planetary atmosphere. We also searched for the N-heterocycle molecules pyridine and pyrimidine finding non-detections in both cases, and determining 2-{sigma} upper limits of 1.15 ppb (c-C5H5N) and 0.85 ppb (c-C4H4N2) for uniform abundances above 300 km. These new results on cyclic molecules provide fresh constraints on photochemical pathways in Titans atmosphere, and will require new modeling and experimental work to fully understand the implications for complex molecule formation.
104 - Brian Jackson 2021
An important and perhaps dominant source of dust in the martian atmosphere, dust devils play a key role in Mars climate. Datasets from previous landed missions have revealed dust devil activity, constrained their structures, and elucidated their dust-lifting capacities. However, each landing site and observational season exhibits unique meteorological properties that shape dust devil activity and help illuminate their dependence on ambient conditions. The recent release of data from the Mars Environmental Dynamics Analyzer (MEDA) instrument suite onboard the Mars 2020 Perseverance rover promises a new treasure-trove for dust devil studies. In this study, we sift the time-series from MEDAs Pressure Sensor (PS) and Radiative and Dust Sensors (RDS) to look for the signals of passing vortices and dust devils. We detected 309 vortex encounters over the missions first 89 sols. Consistent with predictions, these encounter rates exceed InSight and Curiositys encounter rates by factors of several. The RDS time-series also allows us to assess whether a passing vortex is likely to be dusty (and therefore is a true dust devil) or dustless. We find that about one-third of vortices show signs of dust-lofting, although unfavorable encounter geometries may have prevented us from detecting dust for other vortices. In addition to these results, we discuss prospects for vortex studies as additional data from Mars 2020 are processed and made available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا