Do you want to publish a course? Click here

Flexo-diffusion effect: the strong influence on lithium diffusion induced by strain gradient

76   0   0.0 ( 0 )
 Added by Jiawang Hong
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Lithium ion batteries (LIBs) work under sophisticated external force field and its electrochemical properties could be modulated by strain. Owing to the electro-mechanical coupling, the change of micro-local-structures can greatly affect lithium (Li) diffusion rate in solid state electrolytes and electrode materials of LIBs. In this study, we find that strain gradient in bilayer graphene (BLG) significantly affects Li diffusion barrier, which is termed as the flexo-diffusion effect, through first-principles calculations. The Li diffusion barrier substantially decreases/increases under the positive/negative strain gradient, leading to the change of Li diffusion coefficient in several orders of magnitude at 300 K. Interestingly, the regulation effect of strain gradient is much more significant than that of uniform strain field, which can have a remarkable effect on the rate performance of batteries, with a considerable increase in the ionic conductivity and a slight change of the original material structure. Moreover, our ab initio molecular dynamics simulations (AIMD) show that the asymmetric distorted lattice structure provides a driving force for Li diffusion, resulting in oriented diffusion along the positive strain gradient direction. These findings could extend present LIBs technologies by introducing the novel strain gradient engineering.



rate research

Read More

In this work we study the diffusion mechanisms in lithium disilicate melt using molecular dynamics simulation, which has an edge over other simulation methods because it can track down actual atomic rearrangements in materials once a realistic interaction potential is applied. Our simulation results of diffusion coefficients show an excellent agreement with experiments. We also demonstrate that our system obeys the famous Stokes-Einstein relation at least down to 1400 K, while a decoupling between relaxation and viscosity takes place at a higher temperature. Additionally, an analysis on the dynamical behavior of slow-diffusing atoms reveals explicitly the presence of dynamical heterogeneities.
We report on investigations of phonons and lithium diffusion in LiAlO$_2$ based on inelastic neutron scattering (INS) measurements of the phonon density of states (DOS) in {gamma}-LiAlO$_2$ from 473 K to 1073 K, complemented with ab-initio molecular dynamics (AIMD) simulations. We find that phonon modes related to Li vibrations broaden on warming as reflected in the measured phonon DOS and reproduced in simulations. Further, the AIMD simulations probe the nature of lithium diffusion in the perfect crystalline phase ({gamma}-LiAlO$_2$), as well as in a structure with lithium vacancies and a related amorphous phase. Almost liquid-like super-ionic diffusion is observed in AIMD simulations of the three structures at high temperatures; with predicted onset temperatures of 1800 K, 1200 K, and 600 K in the perfect structure, vacancy structure and the amorphous phase, respectively. In the ideal structure, the Li atoms show correlated jumps; while simple and correlated jumps are both seen in the vacancy structure, and a mix of jumps and continuous diffusion occur in the amorphous structure. Further, we find that the Li-diffusion is favored in all cases by a large librational amplitude of the neighbouring AlO4 tetrahedra, and that the amorphous structure opens additional diffusion pathways due to a broad distribution of AlO4 tetrahedra orientations.
76 - Gao Xu , Feng Hao , Jiawang Hong 2020
Dendrite formation is a major obstacle, such as capacity loss and short circuit, to the next-generation high-energy-density lithium (Li) metal batteries. The development of successful Li dendrite mitigation strategies is impeded by an insufficient understanding of Li dendrite growth mechanisms. Li-plating-induced internal stress in Li metal and its effect on dendrite growth have been studied in previous models and experiments, while the underlying microcosmic mechanism is elusive. Here, we analyze the role of plating-induced stress in dendrite formation through first-principles calculations and ab initio molecular dynamics simulations. We show that the deposited Li forms a stable atomic nanofilm structure on copper (Cu) substrate. It is found that the adsorption energy of Li atoms increases from the Li-Cu interface to deposited Li surface, leading to more aggregated Li atoms at the interface. Compared to the pristine Li metal, the deposited Li in the early stage becomes compacted and suffers in-plane compressive stress. Interestingly, we find that there is a giant strain gradient distribution from the Li-Cu interface to deposited Li surface, which makes the deposited atoms adjacent to the Cu surface tend to press upwards with perturbation, causing the dendrite growth. This understanding provides an insight to the atomic-scale origin of Li dendrite growth and may be useful for suppressing the Li dendrite in the Li-metal-based rechargeable batteries.
Diffusion of particles has wide repercussions ranging from particle-based soft matter systems to solid state systems with particular electronic properties. Recently, in the field of magnetism, diffusion of magnetic skyrmions, topologically stabilized quasi-particles, has been demonstrated. Here we show that by applying a magnetic in-plane field and therefore breaking the symmetry of the system, the skyrmion diffusion becomes anisotropic with faster diffusion parallel to the field axis and slower diffusion perpendicular to it. We furthermore show that the absolute value of the applied field controls the absolute values of the diffusion coefficients so that one can thereby uniquely tune both the orientation of the diffusion and its strength. Based on the stochastic Thiele equation, we can explain the observed anisotropic diffusion as a result of the elliptical deformation of the skyrmions by the application of the in-plane field.
In oxide epitaxy, the growth temperature and background oxygen partial pressure are considered as the most critical factors that control the phase stability of an oxide thin film. Here, we report an unusual case wherein diffusion of oxygen vacancies from the substrate overpowers the growth temperature and oxygen partial pressure to deterministically influence the phase stability of $Bi_{2}WO_{6}$ thin film grown by the pulsed laser deposition technique. We show that when grown on an oxygen-deficient $SrTiO_{3}$ substrate, the $Bi_{2}WO_{6}$ film exhibits a mixture of (001) and (100)/(010)-oriented domains alongside (001)-oriented impurity $WO_{3}$ phases. The (100)/(010)-oriented $Bi_{2}WO_{6}$ phases form a self-organized 3D nanopillar-structure, yielding a very rough film surface morphology. Oxygen annealing of the substrate or using a few monolayer-thick $SrRuO_{3}$ as the blocking layer for oxygen vacancy diffusion enables growing high-quality single-crystalline $Bi_{2}WO_{6}$ (001) thin film exhibiting an atomically smooth film surface with step-terrace structure. We propose that the large oxide-ion conductivity of $Bi_{2}WO_{6}$ facilitates diffusion of oxygen vacancies from the substrate during the film growth, accelerating the evaporation of volatile Bismuth (Bi), which hinders the epitaxial growth. Our work provides a general guideline for high-quality thin film growth of Aurivillius compounds and other oxide-ion conductors containing volatile elements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا