Do you want to publish a course? Click here

Plasmonic Nanoslit Arrays Fabricated by Serial Bideposition: Optical and Surface-Enhanced Raman Scattering Study

86   0   0.0 ( 0 )
 Added by Samir Kumar
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, studies have been carried out on attempts to combine surface-enhanced Surface-enhanced Raman spectroscopy (SERS) substrates that can be based on either localized surface plasmon (LSP) or surface plasmon polaritons (SPP) structures. By combining these two systems, the drawbacks of each other can be solved. However, the manufacturing methods involved so far are sophisticated, labor-intensive, expensive, and also technically demanding. We propose a facile method for the fabrication of a flexible plasmonic nanoslit SERS sensor. We utilized the pattern on periodic optical disks (DVD-R) as a cheap substitute for printing the periodic pattern on PDMS with soft imprint lithography. Ag nanoslit (AgNS) was fabricated by serial bideposition using a dynamic oblique angle deposition (DOD) technique. The nanoslit structures were physically and optically characterized, and the experimental results were compared to the numerical simulation studies; Monte Carlo and the finite-difference time-domain (FDTD) simulation. The Ag nanoslit structure showed an excellent SERS enhancement, and its biosensing capability was demonstrated by the sensing of bilirubin.

rate research

Read More

In this paper, we report our study on gold (Au) films with different thicknesses deposited on single layer graphene (SLG) as surface enhanced Raman scattering (SERS) substrates for the characterization of rhodamine (R6G) molecules. We find that an Au film with a thickness of ~7 nm deposited on SLG is an ideal substrate for SERS, giving the strongest Raman signals for the molecules and the weakest photoluminescence (PL) background. While Au films effectively enhance both the Raman and PL signals of molecules, SLG effectively quenches the PL signals from the Au film and molecules. The former is due to the electromagnetic mechanism involved while the latter is due to the strong resonance energy transfer from Au to SLG. Hence, the combination of Au films and SLG can be widely used in the characterization of low concentration molecules with relatively weak Raman signals.
The low efficiency of Raman spectroscopy can be overcome by placing the active molecules in the vicinity of scatterers, typically rough surfaces or nanostructures with various shapes. This surface-enhanced Raman scattering (SERS) leads to substantial enhancement that depends on the scatterer that is used. In this work, we find fundamental upper bounds on the Raman enhancement for arbitrary-shaped scatterers, depending only on its material constants and the separation distance from the molecule. According to our metric, silver is optimal in visible wavelengths while aluminum is better in the near-UV region. Our general analytical bound scales as the volume of the scatterer and the inverse sixth power of the distance to the active molecule. Numerical computations show that simple geometries fall short of the bounds, suggesting further design opportunities for future improvement. For periodic scatterers, we use two formulations to discover different bounds, and the tighter of the two always must apply. Comparing these bounds suggests an optimal period depending on the volume of the scatterer.
We report that rhomb-shaped metal nanoantenna arrays support multiple plasmonic resonances, making them favorable bio-sensing substrates. Besides the two localized plasmonic dipole modes associated with the two principle axes of the rhombi, the sample supports an additional grating-induced surface plasmon polariton resonance. The plasmonic properties of all modes are carefully studied by far-field measurements together with numerical and analytical calculations. The sample is then applied to surface-enhanced Raman scattering measurements. It is shown to be highly efficient since two plasmonic resonances of the structure were simultaneously tuned to coincide with the excitation and the emission wave- length in the SERS experiment. The analysis is completed by measuring the impact of the polarization angle on the SERS signal.
Surface Enhanced Raman Spectroscopy (SERS) is exploited here to investigate the interaction of isolated sp carbon chains (polyynes) in a methanol solution with silver nanoparticles. Hydrogen-terminated polyynes show a strong interaction with silver colloids used as the SERS active medium revealing a chemical SERS effect. SERS spectra after mixing polyynes with silver colloids show a noticeable time evolution. Experimental results, supported by density functional theory (DFT) calculations of the Raman modes, allow us to investigate the behavior and stability of polyynes of different lengths and the overall sp conversion towards sp2 phase.
We synthesized three-dimensional nanoporous graphene films by a chemical vapor deposition method with nanoporous copper as a catalytic substrate. The resulting nanoporous graphene has the same average pore size as the underlying copper substrate. Our surface-enhanced Raman scattering (SERS) investigation indicates that the nanoporosity of graphene significantly improves the SERS efficiency of graphene as a substrate as compared to planar graphene substrates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا