No Arabic abstract
The nature of the atomic defects on the hydrogen passivated Si (100) surface is analyzed using deep learning and scanning tunneling microscopy (STM). A robust deep learning framework capable of identifying atomic species, defects, in the presence of non-resolved contaminates, step edges, and noise is developed. The automated workflow, based on the combination of several networks for image assessment, atom-finding and defect finding, is developed to perform the analysis at different levels of description and is deployed on an operational STM platform. This is further extended to unsupervised classification of the extracted defects using the mean-shift clustering algorithm, which utilizes features automatically engineered from the combined output of neural networks. This combined approach allows the identification of localized and extended defects on the topographically non-uniform surfaces or real materials. Our approach is universal in nature and can be applied to other surfaces for building comprehensive libraries of atomic defects in quantum materials.
Ni2MnGa(100) surface has been investigated in the premartensite and martensite phase by using scanning tunneling microscopy. The presence of twined morphology is observed in the premartensite phase for Mn excess surface which exhibit non-equispaced parallel bands in one side of the twin boundary. Moreover, in the flat region of the surface two domains of non-periodic parallel bands corresponding to the incommensurate CDW is observed. Although, stoichiometric surface also exhibit twining but the parallel bands are equispaced and have equal corrugation. Most interestingly, coexistence of twined morphology and the CDW pattern is observed in the premartensite phase for Ni excess surface which was not reported till date. In the martensite phase for Mn excess surface, incommensurate CDW is transformed to commensurate CDW corresponding to the equispaced parallel bands. In stark contrast, stoichiometric surface exhibit parallel bands that have different periodicity in different regions. Both the voltage dependent STM and STS measurement establishes that this morphology is also related to the CDW.
A simple, reliable method for preparation of bulk Cr tips for Scanning Tunneling Microscopy (STM) is proposed and its potentialities in performing high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are investigated. Cr tips show atomic resolution on ordered surfaces. Contrary to what happens with conventional W tips, rest atoms of the Si(111)-7x7 reconstruction can be routinely observed, probably due to a different electronic structure of the tip apex. SP-STM measurements of the Cr(001) surface showing magnetic contrast are reported. Our results reveal that the peculiar properties of these tips can be suited in a number of STM experimental situations.
Scanning tunneling microscope (STM) has presented a revolutionary methodology to the nanoscience and nanotechnology. It enables imaging the topography of surfaces, mapping the distribution of electronic density of states, and manipulating individual atoms and molecules, all at the atomic resolution. In particular, the atom manipulation capability has evolved from fabricating individual nanostructures towards the scalable production of the atomic-sized devices bottom-up. The combination of precision synthesis and in situ characterization of the atomically precise structures has enabled direct visualization of many quantum phenomena and fast proof-of-principle testing of quantum device functions with real-time feedback to guide the improved synthesis. In this article, several representative examples are reviewed to demonstrate the recent development of atomic scale manipulation. Especially, the review focuses on the progress that address the quantum properties by design through the precise control of the atomic structures in several technologically relevant materials systems. Besides conventional STM manipulations and electronic structure characterization with single-probe STM, integration of multiple atomically precisely controlled probes in a multiprobe STM system vastly extends the capability of in situ characterization to a new dimension where the charge and spin transport behaviors can be examined from mesoscopic to atomic length scale. The automation of the atomic scale manipulation and the integration with the well-established lithographic processes would further push this bottom-up approach to a new level that combines reproducible fabrication, extraordinary programmability, and the ability to produce large-scale arrays of quantum structures.
We compare STM investigations on two hexaboride compounds, SmB$_6$ and EuB$_6$, in an effort to provide a comprehensive picture of their surface structural properties. The latter is of particular importance for studying the nature of the surface states in SmB$_6$ by surface-sensitive tools. Beyond the often encountered atomically rough surface topographies of {it in situ}, low-temperature cleaved samples, differently reconstructed as well as B-terminated and, more rarely, rare-earth terminated areas could be found. With all the different surface topographies observed on both hexaborides, a reliable assignment of the surface terminations can be brought forward.
Dimer vacancy (DV) defect complexes in the Si(001)2x1 surface were investigated using high-resolution scanning tunneling microscopy and first principles calculations. We find that under low bias filled-state tunneling conditions, isolated split-off dimers in these defect complexes are imaged as pairs of protrusions while the surrounding Si surface dimers appear as the usual bean-shaped protrusions. We attribute this to the formation of pi-bonds between the two atoms of the split-off dimer and second layer atoms, and present charge density plots to support this assignment. We observe a local brightness enhancement due to strain for different DV complexes and provide the first experimental confirmation of an earlier prediction that the 1+2-DV induces less surface strain than other DV complexes. Finally, we present a previously unreported triangular shaped split-off dimer defect complex that exists at SB-type step edges, and propose a structure for this defect involving a bound Si monomer.