No Arabic abstract
Axion models with generation-dependent Peccei-Quinn charges can lead to flavor-changing neutral currents, thus motivating QCD axion searches at precision flavor experiments. We rigorously derive limits on the most general effective flavor-violating couplings from current measurements and assess their discovery potential. For two-body decays we use available experimental data to derive limits on $qto q a$ decay rates for all flavor transitions. Axion contributions to neutral-meson mixing are calculated in a systematic way using chiral perturbation theory and operator product expansion. We also discuss in detail baryonic decays and three-body meson decays, which can lead to the best search strategies for some of the couplings. For instance, a strong limit on the $Lambdato n a$ transition can be derived from the supernova SN 1987A. In the near future, dedicated searches for $qto q a$ decays at ongoing experiments could potentially test Peccei-Quinn breaking scales up to $10^{12}$ GeV at NA62 or KOTO, and up to $10^{9}$ GeV at Belle II or BES III.
The QCD axion is one of the most appealing candidates for the dark matter in the Universe. In this article, we discuss the possibility to predict the axion mass in the context of a simple renormalizable grand unified theory where the Peccei-Quinn scale is determined by the unification scale. In this framework, the axion mass is predicted to be in the range $m_a simeq (3 - 13) times 10^{-9} rm{eV}$. We study the axion phenomenology and find that the ABRACADABRA and CASPEr-Electric experiments will be able to fully probe this mass window.
This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in quark and lepton flavor physics. New data generated at Belle II, LHCb, BES III, NA62, KOTO, and Fermilab E989, combined with precise calculations of the relevant hadronic physics, may reveal what lies beyond the Standard Model. We outline a path toward improvements of the precision of existing lattice-QCD calculations and discuss groundbreaking new methods that allow lattice QCD to access new observables.
We construct a string-inspired model, motivated by the flavored Peccei-Quinn (PQ) axions, as a useful bridge between flavor physics and string theory. The key feature is two anomalous gauged $U(1)$ symmetries, responsible for both the fermion mass hierarchy problem of the standard model and the strong CP problem, that combine string theory with flavor physics and severely constrain the form of the F- and D-term contributions to the potential. In the context of supersymmetric moduli stabilization we stabilize the size moduli with positive masses while leaving two axions massless and one axion massive. We demonstrate that, while the massive gauge bosons eat the two axionic degrees of freedom, two axionic directions survive to low energies as the flavored PQ axions.
Extensions of the Standard Model that include vector-like quarks commonly also include additional particles that may mediate new production or decay modes. Using as example the minimal linear $sigma$ model, that reduces to the minimal $SO(5)/SO(4)$ composite Higgs model in a specific limit, we consider the phenomenology of vector-like quarks when a scalar singlet $sigma$ is present. This new particle may be produced in the decays $T to t sigma$, $B to b sigma$, where $T$ and $B$ are vector-like quarks of charges $2/3$ and $-1/3$, respectively, with subsequent decay $sigma to W^+ W^-, ZZ, hh$. By scanning over the allowed parameter space we find that these decays may be dominant. In addition, we find that the presence of several new particles allows for single $T$ production cross sections larger than those expected in minimal models. We discuss the observability of these new signatures in existing searches.
We study the reasonable requirements of two anomalous $U(1)$s in a flavored-axion framework for the anomaly cancellations of both $U(1)$-mixed gravity and $U(1)_Ytimes[U(1)]^2$ which in turn determine the $U(1)_Y$ charges where $U(1)_Y$ is the hypercharge gauge symmetry of the standard model. We argue that, with a flavor symmetry group, axion-induced topology in symmetry-broken phases plays crucial roles in describing how quarks and leptons are organized at a fundamental level and make deep connections with each other. A unified model, as an example, is then proposed in a simple way to describe a whole spectrum of particles where both flavored-axion interactions with normal matter and the masses and mixings of fermions emerge from the spontaneous breaking of a given symmetry group. Once a scale of active neutrino mass defined at a seesaw scale is fixed by the commensurate $U(1)$ flavored-PQ charge of fermions, that of QCD axion decay constant $F_A$ is determined. In turn, fundamental physical parameters complementary to each other are predicted with the help of precision flavor experiments. Model predictions are extracted on the characteristics of neutrino and flavored-axion: $F_A=3.57^{,+1.52}_{,-1.53}times10^{10}$ GeV (consequently, QCD axion mass $m_a=1.52^{+1.14}_{-0.46}times10^{-4}$ eV, axion to photon coupling $|g_{agammagamma}|=2.15^{+1.61}_{-0.64}times10^{-14},text{GeV}^{-1}$, axion to electron coupling $g_{Aee}=3.29^{+2.47}_{-0.98}times10^{-14}$, etc.); atmospheric mixing angle $theta_{23}$, Dirac CP phase $delta_{CP}$, and $0 ubetabeta${it-decay rate} for normal mass ordering and inverted one by taking quantum corrections into account.