No Arabic abstract
Extensions of the Standard Model that include vector-like quarks commonly also include additional particles that may mediate new production or decay modes. Using as example the minimal linear $sigma$ model, that reduces to the minimal $SO(5)/SO(4)$ composite Higgs model in a specific limit, we consider the phenomenology of vector-like quarks when a scalar singlet $sigma$ is present. This new particle may be produced in the decays $T to t sigma$, $B to b sigma$, where $T$ and $B$ are vector-like quarks of charges $2/3$ and $-1/3$, respectively, with subsequent decay $sigma to W^+ W^-, ZZ, hh$. By scanning over the allowed parameter space we find that these decays may be dominant. In addition, we find that the presence of several new particles allows for single $T$ production cross sections larger than those expected in minimal models. We discuss the observability of these new signatures in existing searches.
We discuss the phenomenology of the axial-vector mesons within a three-flavour Linear Sigma Model containing scalar, pseudoscalar, vector and axial-vector degrees of freedom.
We study a model with a down-type SU(2) singlet vector-like quark (VLQ) as a minimal extension of the standard model (SM). In this model, flavor changing neutral currents (FCNCs) arise at tree level and the unitarity of the $3times 3$ Cabibbo-Kobayashi-Maskawa (CKM) matrix does not hold. In this paper, we constrain the FCNC coupling from $brightarrow s$ transitions, especially $B_srightarrow mu^+mu^-$ and $bar{B}rightarrow X_sgamma$ processes. In order to analyze these processes, we derive an effective Lagrangian which is valid below the electroweak symmetry breaking scale. For this purpose, we first integrate out the VLQ field and derive an effective theory by matching Wilson coefficients up to one-loop level. Using the effective theory, we construct the effective Lagrangian for $brightarrow sgamma^{(*)}$. It includes the effects of the SM quarks and the violation of the CKM unitarity. We show the constraints on the magnitude of the FCNC coupling and its phase by taking account of the current experimental data on $Delta M_{B_s}$, $mathrm{Br}[B_srightarrowmu^+mu^-]$, $mathrm{Br}[bar{B}rightarrow X_sgamma]$ and CKM matrix elements as well as theoretical uncertainties. We find that the constraint from the $mathrm{Br}[B_srightarrowmu^+mu^-]$ is more stringent than that from the $mathrm{Br}[bar{B}rightarrow X_sgamma$]. We also obtain the bound for the mass of the VLQ and the strength of the Yukawa couplings related to the FCNC coupling of $brightarrow s$ transition. Using the CKM elements which satisfy above constraints, we show how the unitarity is violated on the complex plane.
The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for $bar{q}q$ states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar $bar{q}q$ states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as $bar{q}q$ states.
Axion models with generation-dependent Peccei-Quinn charges can lead to flavor-changing neutral currents, thus motivating QCD axion searches at precision flavor experiments. We rigorously derive limits on the most general effective flavor-violating couplings from current measurements and assess their discovery potential. For two-body decays we use available experimental data to derive limits on $qto q a$ decay rates for all flavor transitions. Axion contributions to neutral-meson mixing are calculated in a systematic way using chiral perturbation theory and operator product expansion. We also discuss in detail baryonic decays and three-body meson decays, which can lead to the best search strategies for some of the couplings. For instance, a strong limit on the $Lambdato n a$ transition can be derived from the supernova SN 1987A. In the near future, dedicated searches for $qto q a$ decays at ongoing experiments could potentially test Peccei-Quinn breaking scales up to $10^{12}$ GeV at NA62 or KOTO, and up to $10^{9}$ GeV at Belle II or BES III.
The Minimal Linear $sigma$ Model is a useful theoretical laboratory. One can investigate in a perturbative renormalisable model the properties of the Higgs boson as a pseudo-Goldstone boson, the phenomenological effects of the radial mode of the field $mathtt{s}$ which spontaneously breaks the global $SO(5)$ symmetry and the validity of conclusions based on the Effective Field Theory approach with the field $mathtt{s}$ in the spectrum, after the decoupling of heavy degrees of freedom. In this paper all those issues are discussed in the framework of the Minimal Linear $sigma$ Model with CP violating phases leading to pseudoscalar components in the effective Standard Model Yukawa couplings. Also the character of the electroweak phase transition in the presence of the field $mathtt{s}$ is investigated.