Do you want to publish a course? Click here

Direct measurement of temporal correlations above the spin-glass transition by coherent resonant magnetic x-ray spectroscopy

109   0   0.0 ( 0 )
 Added by Sunil Sinha
 Publication date 2020
  fields Physics
and research's language is English
 Authors Jingjin Song




Ask ChatGPT about the research

In the 1970s a new paradigm was introduced that interacting quenched systems, such as a spin-glass, have a phase transition in which long time memory of spatial patterns is realized without spatial correlations. The principal methods to study the spin-glass transition, besides some elaborate and elegant theoretical constructions, have been numerical computer simulations and neutron spin echo measurements . We show here that the dynamical correlations of the spin-glass transition are embedded in measurements of the four-spin correlations at very long times. This information is directly available in the temporal correlations of the intensity, which encode the spin-orientation memory, obtained by the technique of resonant magnetic x-ray photon correlation spectroscopy (RM- XPCS). We have implemented this method to observe and accurately characterize the critical slowing down of the spin orientation fluctuations in the classic metallic spin glass alloy Cu(Mn) over time scales of 1 to 1000 secs. Our method opens the way for studying phase transitions in systems such as spin ices, and quantum spin liquids, as well as the structural glass transition.



rate research

Read More

The quantum critical behavior of the Ising glass in a magnetic field is investigated. We focus on the spin glass to paramagnet transition of the transverse degrees of freedom in the presence of finite longitudinal field. We use two complementary techniques, the Landau theory close to the T=0 transition and the exact diagonalization method for finite systems. This allows us to estimate the size of the critical region and characterize various crossover regimes. An unexpectedly small energy scale on the disordered side of the critical line is found, and its possible relevance to experiments on metallic glasses is briefly discussed.
A longstanding open problem in condensed matter physics is whether or not a strongly disordered interacting insulator can be mapped to a system of effectively non-interacting localized excitations. We investigate this issue on the insulating side of the 3D metal-insulator transition (MIT) in phosphorus doped silicon using the new technique of terahertz two dimensional coherent spectroscopy. Despite the intrinsically disordered nature of these materials, we observe coherent excitations and strong photon echoes that provide us with a powerful method for the study of their decay processes. We extract the first measurements of energy relaxation ($T_1$) and decoherence ($T_2$) times close to the MIT in this classic system. We observe that (i) both relaxation rates are linear in excitation frequency with a slope close to unity, (ii) the energy relaxation timescale $T_1$ counterintuitively increases with increasing temperature and (iii) the coherence relaxation timescale $T_2$ has little temperature dependence between 5 K and 25 K, but counterintuitively increases as the material is doped towards the MIT. We argue that these features imply that (a) the system behaves as a well isolated electronic system on the timescales of interest, and (b) relaxation is controlled by electron-electron interactions. We discuss the potential relaxation channels that may explain the behavior. Our observations constitute a qualitatively new phenomenology, driven by the interplay of strong disorder and strong electron-electron interactions, which we dub the marginal Fermi glass.
Resonant magnetic x-ray scattering has been used to investigate the magnetic structure of the magnetoelectric multiferroic DyMn2O5. We have studied the magnetic structure in the ferroelectric phase of this material, which displays the strongest ferroelectric polarisation and magnetodielectric effect of the RMn2O5 (where R is a rare earth ion, Y or Bi) family. The magnetic structure observed is similar to that of the other members of the series, but differs in the direction of the ordered moments. In DyMn2O5 both the Dy and Mn moments lie close to the b-axis, whereas in other RMn2O5 they lie close to the a-axis.
We report the direct observation of slow fluctuations of helical antiferromagnetic domains in an ultra-thin holmium film using coherent resonant magnetic x-ray scattering. We observe a gradual increase of the fluctuations in the speckle pattern with increasing temperature, while at the same time a static contribution to the speckle pattern remains. This finding indicates that domain-wall fluctuations occur over a large range of time scales. We ascribe this non-ergodic behavior to the strong dependence of the fluctuation rate on the local thickness of the film.
170 - S. Nandi , A. Kreyssig , Y. Lee 2009
Element-specific x-ray resonant magnetic scattering investigations were performed to determine the magnetic structure of Eu in EuRh2As2. In the temperature range from 46 K down to 6 K, an incommensurate antiferromagnetic (ICM)structure with a temperature dependent propagation vector (0 0 0.9) coexists with a commensurate antiferromagnetic (CM) structure. Angular-dependent measurements of the magnetic intensity indicate that the magnetic moments lie in the tetragonal basal plane and are ferromagnetically aligned within the a-b plane for both magnetic structures. The ICM structure is a spiral-like magnetic structure with a turn angle of 162 deg between adjacent Eu planes. In the CM structure, this angle is 180 deg. These results are consistent with band-structure calculations which indicate a strong sensitivity of the magnetic configuration on the Eu valence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا