Do you want to publish a course? Click here

Subaru Infrared Adaptive Optics-assisted High-spatial-resolution Imaging Search for Luminous Dual Active Galactic Nuclei in Nearby Ultraluminous Infrared Galaxies

137   0   0.0 ( 0 )
 Added by Masatoshi Imanishi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present infrared K- (2.1 micron) and L-band (3.8 micron) high-spatial-resolution (<0.3) imaging observations of 17 nearby (z < 0.17) ultraluminous infrared galaxies (ULIRGs) assisted with the adaptive optics of the Subaru Telescope. We search for compact red K-L color emission as the indicator of luminous active galactic nuclei (AGNs) due to AGN-heated hot dust emission. Two luminous dual AGN candidates are revealed. Combining these results with those of our previous study, we can state that the detected fraction of luminous dual AGNs in nearby ULIRGs is much less than unity (<20%), even when infrared wavelengths >2 micron are used that should be sensitive to buried AGNs due to small dust extinction effects. For ULIRGs with resolved multiple nuclear K-band emission, we estimate the activation of supermassive black holes (SMBHs) at individual galaxy nuclei in the form of AGN luminosity normalized by SMBH mass inferred from host galaxy stellar luminosity. We confirm a trend that more massive SMBHs in K-band brighter primary galaxy nuclei are generally more active, with higher SMBH-mass-normalized AGN luminosity than less massive SMBHs in K-band fainter secondary galaxy nuclei, as predicted by numerical simulations of gas-rich major galaxy mergers. In two sources, the presence of even infrared elusive extremely deeply buried AGNs is indicated by comparisons with available (sub)millimeter data. Non-synchronous SMBH activation (i.e., less activation of less massive SMBHs) and the possible presence of such infrared elusive AGNs may be responsible for the small fraction of infrared-detected luminous dual AGNs in nearby merging ULIRGs.



rate research

Read More

99 - M. Das 2017
Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs) to the centre of the merger remnant and the eventual formation of a SMBH binary. If both the SMBHs are accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually very bright and shows enhanced star formation. In this paper we summarize the current sample of DAGN from previous studies and describe methods that can be used to identify strong DAGN candidates from optical and spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates (SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself and not related to the presence of two AGN in the system.
We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L_FIR equal to or greater than 10^{12} L_sun) and 19 new LIGs (with L_FIR equal to or greater than 10^{11} L_sun). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines - four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.
We present diffraction-limited (FWHM ~ 0.3arcsec) Gemini/T-ReCS mid-infrared (MIR: N-band or narrow-band at 8.7micron) imaging of four Luminous Infrared Galaxies (LIRGs) drawn from a representative local sample. The MIR emission in the central few kpc is strikingly similar to that traced by Pa-alpha, and generally consists of bright nuclear emission and several compact circumnuclear and/or extranuclear HII regions. The central MIR emission is dominated by these powerful HII regions, consistent with the majority of AGN in this local sample of LIRGs contributing a minor part of the MIR emission. The luminous circumnuclear HII regions detected in LIRGs follow the extrapolation of the 8micron vs. Pa-alpha relation found for M51 HII knots. The integrated central 3-7kpc of galaxies, however, present elevated 8micron/Pa-alpha ratios with respect to individual HII regions, similar to the integrated values for star-forming galaxies. Our results show that the diffuse 8micron emission, not directly related to the ionizing stellar population, can be as luminous as that from the resolved HII regions. Therefore, calibrations of the star formation rate for distant galaxies should be based on the integrated 8micron emission of nearby galaxies, not that of the HII regions alone.
129 - T. Diaz-Santos 2010
We present a high spatial (diffraction-limited) resolution (~0.3) mid-infrared (MIR) spectroscopic study of the nuclei and star-forming regions of 4 local luminous infrared galaxies (LIRGs) using T-ReCS on the Gemini South telescope. We investigate the spatial variations of the features seen in the N-band spectra of LIRGs on scales of ~100 pc, which allow us to separate the AGN emission from that of the star formation (SF). We compare our Gemini T-ReCS nuclear and integrated spectra of LIRGs with those obtained with Spitzer IRS. The 9.7um silicate absorption feature is weaker in the nuclei of the LIRGs than in the surrounding regions. This is probably due to the either clumpy or compact environment of the central AGN or young, nuclear starburst. We find that the [NeII] luminosity surface density is tightly and directly correlated with that of Pa-alpha for the LIRG star-forming regions (slope of 1.00+-0.02). Although the 11.3um PAH feature shows also a trend with Pa-alpha, this is not common for all the regions. We also find that the [NeII]Pa-alpha ratio does not depend on the Pa-alpha equivalent width (EW), i.e., on the age of the ionizing stellar populations, suggesting that, on the scales probed here, the [NeII] emission line is a good tracer of the SF activity in LIRGs. On the other hand, the 11.3um PAHPa-alpha ratio increases for smaller values of the Pa-alpha EW (increasing ages), indicating that the 11.3um PAH feature can also be excited by older stars than those responsible for the Pa-alpha emission. Additional high spatial resolution observations are essential to investigate, in a statistical way, the star formation in local LIRGs at the smallest scales and to probe ultimately whether they share the same physical properties as high-z LIRGs, ULIRGs and submillimiter galaxies.
130 - D. Farrah 2007
(Abridged) We present R~600, 10-37um spectra of 53 ULIRGs at z<0.32, taken using the IRS on board Spitzer. All of the spectra show fine structure emission lines of Ne, O, S, Si and Ar, as well as molecular Hydrogen lines. Some ULIRGs also show emission lines of Cl, Fe, P, and atomic Hydrogen, and/or absorption features from C_2H_2, HCN, and OH. We employ diagnostics based on the fine-structure lines, as well as the EWs and luminosities of PAH features and the strength of the 9.7um silicate absorption feature (S_sil), to explore the power source behind the infrared emission in ULIRGs. We show that the IR emission from the majority of ULIRGs is powered mostly by star formation, with only ~20% of ULIRGs hosting an AGN with a comparable or greater IR luminosity than the starburst. The detection of the 14.32um [NeV] line in just under half the sample however implies that an AGN contributes significantly to the mid-IR flux in ~42% of ULIRGs. The emission line ratios, luminosities and PAH EWs are consistent with the starbursts and AGN in ULIRGs being more extincted, and for the starbursts more compac
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا