Do you want to publish a course? Click here

High spatial resolution T-ReCS mid-infrared imaging of Luminous Infrared Galaxies

68   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present diffraction-limited (FWHM ~ 0.3arcsec) Gemini/T-ReCS mid-infrared (MIR: N-band or narrow-band at 8.7micron) imaging of four Luminous Infrared Galaxies (LIRGs) drawn from a representative local sample. The MIR emission in the central few kpc is strikingly similar to that traced by Pa-alpha, and generally consists of bright nuclear emission and several compact circumnuclear and/or extranuclear HII regions. The central MIR emission is dominated by these powerful HII regions, consistent with the majority of AGN in this local sample of LIRGs contributing a minor part of the MIR emission. The luminous circumnuclear HII regions detected in LIRGs follow the extrapolation of the 8micron vs. Pa-alpha relation found for M51 HII knots. The integrated central 3-7kpc of galaxies, however, present elevated 8micron/Pa-alpha ratios with respect to individual HII regions, similar to the integrated values for star-forming galaxies. Our results show that the diffuse 8micron emission, not directly related to the ionizing stellar population, can be as luminous as that from the resolved HII regions. Therefore, calibrations of the star formation rate for distant galaxies should be based on the integrated 8micron emission of nearby galaxies, not that of the HII regions alone.



rate research

Read More

We present T-ReCS high spatial resolution N-band (8-13 micron) spectroscopy of the central regions (a few kpc) of 3 local LIRGs. The nuclear spectra show deep 9.7 micron silicate absorption feature and the high ionization [SIV]10.5 micron emission line, consistent with their optical classification as AGN. The two LIRGs with unresolved mid-IR emission do not show PAH emission at 11.3 micron in their nuclear spectra. The spatially resolved mid-IR spectroscopy of NGC 5135 allows us to separate out the spectra of the Seyfert nucleus, an HII region, and the diffuse region between them on scales of less than 2.5 arcsec ~ 600 pc. The diffuse region spectrum is characterized by strong PAH emission with almost no continuum, whereas the HII region shows PAH emission with a smaller equivalent width as well as [NeII]12.8 micron line.
108 - T. Diaz-Santos 2010
We present a high spatial (diffraction-limited) resolution (~0.3) mid-infrared (MIR) spectroscopic study of the nuclei and star-forming regions of 4 local luminous infrared galaxies (LIRGs) using T-ReCS on the Gemini South telescope. We investigate the spatial variations of the features seen in the N-band spectra of LIRGs on scales of ~100 pc, which allow us to separate the AGN emission from that of the star formation (SF). We compare our Gemini T-ReCS nuclear and integrated spectra of LIRGs with those obtained with Spitzer IRS. The 9.7um silicate absorption feature is weaker in the nuclei of the LIRGs than in the surrounding regions. This is probably due to the either clumpy or compact environment of the central AGN or young, nuclear starburst. We find that the [NeII] luminosity surface density is tightly and directly correlated with that of Pa-alpha for the LIRG star-forming regions (slope of 1.00+-0.02). Although the 11.3um PAH feature shows also a trend with Pa-alpha, this is not common for all the regions. We also find that the [NeII]Pa-alpha ratio does not depend on the Pa-alpha equivalent width (EW), i.e., on the age of the ionizing stellar populations, suggesting that, on the scales probed here, the [NeII] emission line is a good tracer of the SF activity in LIRGs. On the other hand, the 11.3um PAHPa-alpha ratio increases for smaller values of the Pa-alpha EW (increasing ages), indicating that the 11.3um PAH feature can also be excited by older stars than those responsible for the Pa-alpha emission. Additional high spatial resolution observations are essential to investigate, in a statistical way, the star formation in local LIRGs at the smallest scales and to probe ultimately whether they share the same physical properties as high-z LIRGs, ULIRGs and submillimiter galaxies.
118 - D. Farrah 2007
(Abridged) We present R~600, 10-37um spectra of 53 ULIRGs at z<0.32, taken using the IRS on board Spitzer. All of the spectra show fine structure emission lines of Ne, O, S, Si and Ar, as well as molecular Hydrogen lines. Some ULIRGs also show emission lines of Cl, Fe, P, and atomic Hydrogen, and/or absorption features from C_2H_2, HCN, and OH. We employ diagnostics based on the fine-structure lines, as well as the EWs and luminosities of PAH features and the strength of the 9.7um silicate absorption feature (S_sil), to explore the power source behind the infrared emission in ULIRGs. We show that the IR emission from the majority of ULIRGs is powered mostly by star formation, with only ~20% of ULIRGs hosting an AGN with a comparable or greater IR luminosity than the starburst. The detection of the 14.32um [NeV] line in just under half the sample however implies that an AGN contributes significantly to the mid-IR flux in ~42% of ULIRGs. The emission line ratios, luminosities and PAH EWs are consistent with the starbursts and AGN in ULIRGs being more extincted, and for the starbursts more compac
65 - B. Stecklum 2002
We present results of our diffraction-limited mid-infrared imaging of the massive star-forming region W3(OH) with SpectroCam-10 on the 5-m Hale telescope at wavelengths of 8.8, 11.7, and 17.9 micron. The thermal emission from heated dust grains associated with the ultracompact HII region W3(OH) is resolved and has a spatial extent of ~2 arcsec in the N band. We did not detect the hot core source W3(H_2O) which implies the presence of at least 12 mag of extinction at 11.7 micron towards this source. These results together with other data were used to constrain the properties of W3(OH) and W3(H_2O) and their envelopes by modelling the thermal dust emission.
G339.88-1.26 is considered to be a good candidate for a massive star with a circumstellar disk. This has been supported by the observations of linearly distributed methanol maser spots believed to delineate this disk, and mid-infrared observations that have discovered a source at this location that is elongated at the same position angle as the methanol maser distribution. We used the mid-infrared imager/spectrometer OSCIR at Keck to make high-resolution images of G339.88-1.26. We resolve the mid-infrared emission into 3 sources within 1.5 arcsec of the location of the masers. We determine that the methanol masers are most likely not located in a circumstellar disk. Furthermore we find that the observed radio continuum emission most likely comes from two sources in close proximity to each other. One source is an unobscured massive star with an extended HII region that is responsible for the peak in the radio continuum emission. A second source is embedded and centered on the elongation in the radio continuum emission that is believed to be tracing an outflow in this region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا