No Arabic abstract
Recent neural text-to-speech (TTS) models with fine-grained latent features enable precise control of the prosody of synthesized speech. Such models typically incorporate a fine-grained variational autoencoder (VAE) structure, extracting latent features at each input token (e.g., phonemes). However, generating samples with the standard VAE prior often results in unnatural and discontinuous speech, with dramatic prosodic variation between tokens. This paper proposes a sequential prior in a discrete latent space which can generate more naturally sounding samples. This is accomplished by discretizing the latent features using vector quantization (VQ), and separately training an autoregressive (AR) prior model over the result. We evaluate the approach using listening tests, objective metrics of automatic speech recognition (ASR) performance, and measurements of prosody attributes. Experimental results show that the proposed model significantly improves the naturalness in random sample generation. Furthermore, initial experiments demonstrate that randomly sampling from the proposed model can be used as data augmentation to improve the ASR performance.
We present a neural text-to-speech system for fine-grained prosody transfer from one speaker to another. Conventional approaches for end-to-end prosody transfer typically use either fixed-dimensional or variable-length prosody embedding via a secondary attention to encode the reference signal. However, when trained on a single-speaker dataset, the conventional prosody transfer systems are not robust enough to speaker variability, especially in the case of a reference signal coming from an unseen speaker. Therefore, we propose decoupling of the reference signal alignment from the overall system. For this purpose, we pre-compute phoneme-level time stamps and use them to aggregate prosodic features per phoneme, injecting them into a sequence-to-sequence text-to-speech system. We incorporate a variational auto-encoder to further enhance the latent representation of prosody embeddings. We show that our proposed approach is significantly more stable and achieves reliable prosody transplantation from an unseen speaker. We also propose a solution to the use case in which the transcription of the reference signal is absent. We evaluate all our proposed methods using both objective and subjective listening tests.
Text-based speech editors expedite the process of editing speech recordings by permitting editing via intuitive cut, copy, and paste operations on a speech transcript. A major drawback of current systems, however, is that edited recordings often sound unnatural because of prosody mismatches around edited regions. In our work, we propose a new context-aware method for more natural sounding text-based editing of speech. To do so, we 1) use a series of neural networks to generate salient prosody features that are dependent on the prosody of speech surrounding the edit and amenable to fine-grained user control 2) use the generated features to control a standard pitch-shift and time-stretch method and 3) apply a denoising neural network to remove artifacts induced by the signal manipulation to yield a high-fidelity result. We evaluate our approach using a subjective listening test, provide a detailed comparative analysis, and conclude several interesting insights.
Explicit duration modeling is a key to achieving robust and efficient alignment in text-to-speech synthesis (TTS). We propose a new TTS framework using explicit duration modeling that incorporates duration as a discrete latent variable to TTS and enables joint optimization of whole modules from scratch. We formulate our method based on conditional VQ-VAE to handle discrete duration in a variational autoencoder and provide a theoretical explanation to justify our method. In our framework, a connectionist temporal classification (CTC) -based force aligner acts as the approximate posterior, and text-to-duration works as the prior in the variational autoencoder. We evaluated our proposed method with a listening test and compared it with other TTS methods based on soft-attention or explicit duration modeling. The results showed that our systems rated between soft-attention-based methods (Transformer-TTS, Tacotron2) and explicit duration modeling-based methods (Fastspeech).
Deepspeech was very useful for development IoT devices that need voice recognition. One of the voice recognition systems is deepspeech from Mozilla. Deepspeech is an open-source voice recognition that was using a neural network to convert speech spectrogram into a text transcript. This paper shows the implementation process of speech recognition on a low-end computational device. Development of English-language speech recognition that has many datasets become a good point for starting. The model that used results from pre-trained model that provide by each version of deepspeech, without change of the model that already released, furthermore the benefit of using raspberry pi as a media end-to-end speech recognition device become a good thing, user can change and modify of the speech recognition, and also deepspeech can be standalone device without need continuously internet connection to process speech recognition, and even this paper show the power of Tensorflow Lite can make a significant difference on inference by deepspeech rather than using Tensorflow non-Lite.This paper shows the experiment using Deepspeech version 0.1.0, 0.1.1, and 0.6.0, and there is some improvement on Deepspeech version 0.6.0, faster while processing speech-to-text on old hardware raspberry pi 3 b+.
Multi-speaker speech synthesis is a technique for modeling multiple speakers voices with a single model. Although many approaches using deep neural networks (DNNs) have been proposed, DNNs are prone to overfitting when the amount of training data is limited. We propose a framework for multi-speaker speech synthesis using deep Gaussian processes (DGPs); a DGP is a deep architecture of Bayesian kernel regressions and thus robust to overfitting. In this framework, speaker information is fed to duration/acoustic models using speaker codes. We also examine the use of deep Gaussian process latent variable models (DGPLVMs). In this approach, the representation of each speaker is learned simultaneously with other model parameters, and therefore the similarity or dissimilarity of speakers is considered efficiently. We experimentally evaluated two situations to investigate the effectiveness of the proposed methods. In one situation, the amount of data from each speaker is balanced (speaker-balanced), and in the other, the data from certain speakers are limited (speaker-imbalanced). Subjective and objective evaluation results showed that both the DGP and DGPLVM synthesize multi-speaker speech more effective than a DNN in the speaker-balanced situation. We also found that the DGPLVM outperforms the DGP significantly in the speaker-imbalanced situation.