No Arabic abstract
Digital receivers are required to recover the transmitted symbols from their observed channel output. In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging. A family of algorithms capable of reliably recovering multiple symbols is based on interference cancellation. However, these methods assume that the channel is linear, a model which does not reflect many relevant channels, as well as require accurate channel state information (CSI), which may not be available. In this work we propose a multiuser MIMO receiver which learns to jointly detect in a data-driven fashion, without assuming a specific channel model or requiring CSI. In particular, we propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC. The resulting symbol detector is based on integrating dedicated machine-learning (ML) methods into the iterative SIC algorithm. DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear and its parameters to be known. Our numerical evaluations demonstrate that for linear channels with full CSI, DeepSIC approaches the performance of iterative SIC, which is comparable to the optimal performance, and outperforms previously proposed ML-based MIMO receivers. Furthermore, in the presence of CSI uncertainty, DeepSIC significantly outperforms model-based approaches. Finally, we show that DeepSIC accurately detects symbols in non-linear channels, where conventional iterative SIC fails even when accurate CSI is available.
In this paper, we propose the joint interference cancellation, fast fading channel estimation, and data symbol detection for a general interference setting where the interfering source and the interfered receiver are unsynchronized and occupy overlapping channels of different bandwidths. The interference must be canceled before the channel estimation and data symbol detection of the desired communication are performed. To this end, we have to estimate the Effective Interference Coefficients (EICs) and then the desired fast fading channel coefficients. We construct a two-phase framework where the EICs and desired channel coefficients are estimated using the joint maximum likelihood-maximum a posteriori probability (JML-MAP) criteria in the first phase; and the MAP based data symbol detection is performed in the second phase. Based on this two-phase framework, we also propose an iterative algorithm for interference cancellation, channel estimation and data detection. We analyze the channel estimation error, residual interference, symbol error rate (SER) achieved by the proposed framework. We then discuss how to optimize the pilot density to achieve the maximum throughput. Via numerical studies, we show that our design can effectively mitigate the interference for a wide range of SNR values, our proposed channel estimation and symbol detection design can achieve better performances compared to the existing method. Moreover, we demonstrate the improved performance of the iterative algorithm with respect to the non-iterative counterpart.
In this paper, we consider the use of deep neural networks in the context of Multiple-Input-Multiple-Output (MIMO) detection. We give a brief introduction to deep learning and propose a modern neural network architecture suitable for this detection task. First, we consider the case in which the MIMO channel is constant, and we learn a detector for a specific system. Next, we consider the harder case in which the parameters are known yet changing and a single detector must be learned for all multiple varying channels. We demonstrate the performance of our deep MIMO detector using numerical simulations in comparison to competing methods including approximate message passing and semidefinite relaxation. The results show that deep networks can achieve state of the art accuracy with significantly lower complexity while providing robustness against ill conditioned channels and mis-specified noise variance.
In this paper, an energy efficiency (EE) game in a MIMO multiple access channel (MAC) communication system is considered. The existence and the uniqueness of the Nash Equilibrium (NE) is affirmed. A bisection search algorithm is designed to find this unique NE. Despite being sub-optimal for deploying the $varepsilon$-approximate NE of the game when the number of antennas in transmitter is unequal to receivers, the policy found by the proposed algorithm is shown to be more efficient than the classical allocation techniques. Moreover, compared to the general algorithm based on fractional programming technique, our proposed algorithm is easier to implement. Simulation shows that even the policy found by proposed algorithm is not the NE of the game, the deviation w.r.t. to the exact NE is small and the resulted policy actually Pareto-dominates the unique NE of the game at least for 2-user situation.
In this paper, we consider hybrid beamforming designs for multiuser massive multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems. Aiming at maximizing the weighted spectral efficiency, we propose one alternating maximization framework where the analog precoding is optimized by Riemannian manifold optimization. If the digital precoding is optimized by a locally optimal algorithm, we obtain a locally optimal alternating maximization algorithm. In contrast, if we use a weighted minimum mean square error (MMSE)-based iterative algorithm for digital precoding, we obtain a suboptimal alternating maximization algorithm with reduced complexity in each iteration. By characterizing the upper bound of the weighted arithmetic and geometric means of mean square errors (MSEs), it is shown that the two alternating maximization algorithms have similar performance when the user specific weights do not have big differences. Verified by numerical results, the performance gap between the two alternating maximization algorithms becomes large when the ratio of the maximal and minimal weights among users is very large. Moreover, we also propose a low-complexity closed-form method without iterations. It employs matrix decomposition for the analog beamforming and weighted MMSE for the digital beamforming. Although it is not supposed to maximize the weighted spectral efficiency, it exhibits small performance deterioration compared to the two iterative alternating maximization algorithms and it qualifies as a good initialization for iterative algorithms, saving thereby iterations.
In this paper, we consider the design of a multiple-input multiple-output (MIMO) transmitter which simultaneously functions as a MIMO radar and a base station for downlink multiuser communications. In addition to a power constraint, we require the covariance of the transmit waveform be equal to a given optimal covariance for MIMO radar, to guarantee the radar performance. With this constraint, we formulate and solve the signal-to-interference-plus-noise ratio (SINR) balancing problem for multiuser transmit beamforming via convex optimization. Considering that the interference cannot be completely eliminated with this constraint, we introduce dirty paper coding (DPC) to further cancel the interference, and formulate the SINR balancing and sum rate maximization problem in the DPC regime. Although both of the two problems are non-convex, we show that they can be reformulated to convex optimizations via the Lagrange and downlink-uplink duality. In addition, we propose gradient projection based algorithms to solve the equivalent dual problem of SINR balancing, in both transmit beamforming and DPC regimes. The simulation results demonstrate significant performance improvement of DPC over transmit beamforming, and also indicate that the degrees of freedom for the communication transmitter is restricted by the rank of the covariance.