No Arabic abstract
In this paper, we consider hybrid beamforming designs for multiuser massive multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems. Aiming at maximizing the weighted spectral efficiency, we propose one alternating maximization framework where the analog precoding is optimized by Riemannian manifold optimization. If the digital precoding is optimized by a locally optimal algorithm, we obtain a locally optimal alternating maximization algorithm. In contrast, if we use a weighted minimum mean square error (MMSE)-based iterative algorithm for digital precoding, we obtain a suboptimal alternating maximization algorithm with reduced complexity in each iteration. By characterizing the upper bound of the weighted arithmetic and geometric means of mean square errors (MSEs), it is shown that the two alternating maximization algorithms have similar performance when the user specific weights do not have big differences. Verified by numerical results, the performance gap between the two alternating maximization algorithms becomes large when the ratio of the maximal and minimal weights among users is very large. Moreover, we also propose a low-complexity closed-form method without iterations. It employs matrix decomposition for the analog beamforming and weighted MMSE for the digital beamforming. Although it is not supposed to maximize the weighted spectral efficiency, it exhibits small performance deterioration compared to the two iterative alternating maximization algorithms and it qualifies as a good initialization for iterative algorithms, saving thereby iterations.
The high energy consumption of massive multi-input multi-out (MIMO) system has become a prominent problem in the millimeter wave(mm-Wave) communication scenario. The hybrid precoding technology greatly reduces the number of radio frequency(RF) chains by handing over part of the coding work to the phase shifting network, which can effectively improve energy efficiency. However, conventional hybrid precoding algorithms based on mathematical means often suffer from performance loss and high computational complexity. In this paper, a novel BP-neural-network-enabled hybrid precoding algorithm is proposed, in which the full-digital zero-forcing(ZF) precoding is set as the training target. Considering that signals at the base station are complex, we choose the complex neural network that has a richer representational capacity. Besides, we present the activation function of the complex neural network and the gradient derivation of the back propagation process. Simulation results demonstrate that the performance of the proposed hybrid precoding algorithm can optimally approximate the ZF precoding.
As a key technology for future wireless networks, massive multiple-input multiple-output (MIMO) can significantly improve the energy efficiency (EE) and spectral efficiency (SE), and the performance is highly dependant on the degree of the available channel state information (CSI). While most existing works on massive MIMO focused on the case where the instantaneous CSI at the transmitter (CSIT) is available, it is usually not an easy task to obtain precise instantaneous CSIT. In this paper, we investigate EE-SE tradeoff in single-cell massive MIMO downlink transmission with statistical CSIT. To this end, we aim to optimize the system resource efficiency (RE), which is capable of striking an EE-SE balance. We first figure out a closed-form solution for the eigenvectors of the optimal transmit covariance matrices of different user terminals, which indicates that beam domain is in favor of performing RE optimal transmission in massive MIMO downlink. Based on this insight, the RE optimization precoding design is reduced to a real-valued power allocation problem. Exploiting the techniques of sequential optimization and random matrix theory, we further propose a low-complexity suboptimal two-layer water-filling-structured power allocation algorithm. Numerical results illustrate the effectiveness and near-optimal performance of the proposed statistical CSI aided RE optimization approach.
While mmWave bands provide a large bandwidth for mobile broadband services, they suffer from severe path loss and shadowing. Multiple-antenna techniques such as beamforming (BF) can be applied to compensate the signal attenuation. We consider a special case of hybrid BF called per-stream hybrid BF (PSHBF) which is easier to implement than the general hybrid BF because it circumvents the need for joint analog-digital beamformer optimization. Employing BF at the base station enables the transmission of multiple data streams to several users in the same resource block. In this paper, we provide an offline study of proportional fair multi-user scheduling in a mmWave system with PSHBF to understand the impact of various system parameters on the performance. We formulate multi-user scheduling as an optimization problem. To tackle the non-convexity, we provide a feasible solution and show through numerical examples that the performance of the provided solution is very close to an upper-bound. Using this framework, we provide extensive numerical investigations revealing several engineering insights.
In this paper, an energy efficiency (EE) game in a MIMO multiple access channel (MAC) communication system is considered. The existence and the uniqueness of the Nash Equilibrium (NE) is affirmed. A bisection search algorithm is designed to find this unique NE. Despite being sub-optimal for deploying the $varepsilon$-approximate NE of the game when the number of antennas in transmitter is unequal to receivers, the policy found by the proposed algorithm is shown to be more efficient than the classical allocation techniques. Moreover, compared to the general algorithm based on fractional programming technique, our proposed algorithm is easier to implement. Simulation shows that even the policy found by proposed algorithm is not the NE of the game, the deviation w.r.t. to the exact NE is small and the resulted policy actually Pareto-dominates the unique NE of the game at least for 2-user situation.
In this work, we consider the design of hybrid analog-digital (HAD) multi-carrier MIMO-OFDM two-way relaying systems, where the relay station is equipped with a HAD amplify-and-forward architecture and every mobile station is equipped with a fully-digital beamforming architecture. We propose a sub-optimal solution by reformulating the original non-convex problem as a constrained Tucker2 decomposition with the objective of minimizing the sum Euclidean-norm between the HAD amplification matrices and their fully-digital counterparts. For the fully-digital amplification matrix design, we use a Frobenius-norm maximization of the effective channels on every subcarrier and propose an effective solution applicable for multi-stream communication scenarios. After that, we propose an alternating maximization (AltMax) HAD solution by exploiting the tensor structure of the reformulated problem. Simulation results are provided, where we show that the proposed fully-digital and AltMax-based HAD amplification matrix designs outperform some benchmark methods, especially for multi-stream communication scenarios.