No Arabic abstract
Optimization methods are playing an increasingly important role in all facets of photonics engineering, from integrated photonics to free space diffractive optics. However, efforts in the photonics community to develop optimization algorithms remain uncoordinated, which has hindered proper benchmarking of design approaches and access to device designs based on optimization. We introduce MetaNet, an online database of photonic devices and design codes intended to promote coordination and collaboration within the photonics community. Using metagratings as a model system, we have uploaded over one hundred thousand device layouts to the database, as well as source code for implementations of local and global topology optimization methods. Further analyses of these large datasets allow the distribution of optimized devices to be visualized for a given optimization method. We expect that the coordinated research efforts enabled by MetaNet will expedite algorithm development for photonics design.
When solving, modelling or reasoning about complex problems, it is usually convenient to use the knowledge of a parallel physical system for representing it. This is the case of lumped-circuit abstraction, which can be used for representing mechanical and acoustic systems, thermal and heat-diffusion problems and in general partial differential equations. Integrated photonic platforms hold the prospect to perform signal processing and analog computing inherently, by mapping into hardware specific operations which relies on the wave-nature of their signals, without trusting on logic gates and digital states like electronics. Although, the distributed nature of photonic platforms leads to the absence of an equivalent approximation to Kirchhoffs law, the main principle used for representing physical systems using circuits. Here we argue that in absence of a straightforward parallelism and homomorphism can be induced. We introduce a photonic platform capable of mimicking Kirchhoffs law in photonics and used as node of a finite difference mesh for solving partial differential equation using monochromatic light in the telecommunication wavelength. We experimentally demonstrate generating in one-shot discrete solutions of a Laplace partial differential equation, with an accuracy above 95% relative to commercial solvers, for an arbitrary set of boundary conditions. Our photonic engine can provide a route to achieve chip-scale, fast (10s of ps), and integrable reprogrammable accelerators for the next generation hybrid high performance computing.
Data-driven approaches have been proposed as effective strategies for the inverse design and optimization of photonic structures in recent years. In order to assist data-driven methods for the design of topology of photonic devices, we propose a topological encoding method that transforms photonic structures represented by binary images to a continuous sparse representation. This sparse representation can be utilized for dimensionality reduction and dataset generation, enabling effective analysis and optimization of photonic topologies with data-driven approaches. As a proof of principle, we leverage our encoding method for the design of two dimensional non-paraxial diffractive optical elements with various diffraction intensity distributions. We proved that our encoding method is able to assist machine-learning-based inverse design approach for accurate and global optimization.
As a new group of advanced 2D layered materials, bismuth oxyhalides, i.e., BiOX (X = Cl, Br, I), have recently become of great interest. In this work, we characterize the third-order optical nonlinearities of BiOBr, an important member of the BiOX family. The nonlinear absorption and Kerr nonlinearity of BiOBr nanoflakes at both 800 nm and 1550 nm are characterized via the Z-Scan technique. Experimental results show that BiOBr nanoflakes exhibit a large nonlinear absorption coefficient = b{eta} = 10-7 m/W as well as a large Kerr coefficient n2 = 10-14 m2/W. We also note that the n2 of BiOBr reverses sign from negative to positive as the wavelength is changed from 800 nm to 1550 nm. We further characterize the thickness-dependent nonlinear optical properties of BiOBr nanoflakes, finding that the magnitudes of b{eta} and n2 increase with decreasing thickness of the BiOBr nanoflakes. Finally, we integrate BiOBr nanoflakes into silicon integrated waveguides and measure their insertion loss, with the extracted waveguide propagation loss showing good agreement with mode simulations based on ellipsometry measurements. These results confirm the strong potential of BiOBr as a promising nonlinear optical material for high-performance hybrid integrated photonic devices.
Second-harmonic generation (SHG) is a direct measure of the strength of second-order nonlinear optical effects, which also include frequency mixing and parametric oscillations. Natural and artificial materials with broken center-of-inversion symmetry in their unit cell display high SHG efficiency, however the silicon-foundry compatible group-IV semiconductors (Si, Ge) are centrosymmetric, thereby preventing full integration of second-order nonlinearity in silicon photonics platforms. Here we demonstrate strong SHG in Ge-rich quantum wells grown on Si wafers. The symmetry breaking is artificially realized with a pair of asymmetric coupled quantum wells (ACQW), in which three of the quantum-confined states are equidistant in energy, resulting in a double resonance for SHG. Laser spectroscopy experiments demonstrate a giant second-order nonlinearity at mid-infrared pump wavelengths between 9 and 12 microns. Leveraging on the strong intersubband dipoles, the nonlinear susceptibility almost reaches 10^5 pm/V
Silicon nitride (SiN) waveguides with ultra-low optical loss enable integrated photonic applications including low noise, narrow linewidth lasers, chip-scale nonlinear photonics, and microwave photonics. Lasers are key components to SiN photonic integrated circuits (PICs), but are difficult to fully integrate with low-index SiN waveguides due to their large mismatch with the high-index III-V gain materials. The recent demonstration of multilayer heterogeneous integration provides a practical solution and enabled the first-generation of lasers fully integrated with SiN waveguides. However a laser with high device yield and high output power at telecommunication wavelengths, where photonics applications are clustered, is still missing, hindered by large mode transition loss, nonoptimized cavity design, and a complicated fabrication process. Here, we report high-performance lasers on SiN with tens of milliwatts output through the SiN waveguide and sub-kHz fundamental linewidth, addressing all of the aforementioned issues. We also show Hertz-level linewidth lasers are achievable with the developed integration techniques. These lasers, together with high-$Q$ SiN resonators, mark a milestone towards a fully-integrated low-noise silicon nitride photonics platform. This laser should find potential applications in LIDAR, microwave photonics and coherent optical communications.