Do you want to publish a course? Click here

A Multilingual View of Unsupervised Machine Translation

119   0   0.0 ( 0 )
 Added by Xavier Garcia
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a probabilistic framework for multilingual neural machine translation that encompasses supervised and unsupervised setups, focusing on unsupervised translation. In addition to studying the vanilla case where there is only monolingual data available, we propose a novel setup where one language in the (source, target) pair is not associated with any parallel data, but there may exist auxiliary parallel data that contains the other. This auxiliary data can naturally be utilized in our probabilistic framework via a novel cross-translation loss term. Empirically, we show that our approach results in higher BLEU scores over state-of-the-art unsupervised models on the WMT14 English-French, WMT16 English-German, and WMT16 English-Romanian datasets in most directions. In particular, we obtain a +1.65 BLEU advantage over the best-performing unsupervised model in the Romanian-English direction.



rate research

Read More

Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs. However, it can only translate between a single language pair and cannot produce translation results for multiple language pairs at the same time. That is, research on multilingual UNMT has been limited. In this paper, we empirically introduce a simple method to translate between thirteen languages using a single encoder and a single decoder, making use of multilingual data to improve UNMT for all language pairs. On the basis of the empirical findings, we propose two knowledge distillation methods to further enhance multilingual UNMT performance. Our experiments on a dataset with English translated to and from twelve other languages (including three language families and six language branches) show remarkable results, surpassing strong unsupervised individual baselines while achieving promising performance between non-English language pairs in zero-shot translation scenarios and alleviating poor performance in low-resource language pairs.
110 - Xu Tan , Yichong Leng , Jiale Chen 2019
Multilingual neural machine translation (NMT) has recently been investigated from different aspects (e.g., pivot translation, zero-shot translation, fine-tuning, or training from scratch) and in different settings (e.g., rich resource and low resource, one-to-many, and many-to-one translation). This paper concentrates on a deep understanding of multilingual NMT and conducts a comprehensive study on a multilingual dataset with more than 20 languages. Our results show that (1) low-resource language pairs benefit much from multilingual training, while rich-resource language pairs may get hurt under limited model capacity and training with similar languages benefits more than dissimilar languages; (2) fine-tuning performs better than training from scratch in the one-to-many setting while training from scratch performs better in the many-to-one setting; (3) the bottom layers of the encoder and top layers of the decoder capture more language-specific information, and just fine-tuning these parts can achieve good accuracy for low-resource language pairs; (4) direct translation is better than pivot translation when the source language is similar to the target language (e.g., in the same language branch), even when the size of direct training data is much smaller; (5) given a fixed training data budget, it is better to introduce more languages into multilingual training for zero-shot translation.
Multilingual neural machine translation (NMT) enables training a single model that supports translation from multiple source languages into multiple target languages. In this paper, we push the limits of multilingual NMT in terms of number of languages being used. We perform extensive experiments in training massively multilingual NMT models, translating up to 102 languages to and from English within a single model. We explore different setups for training such models and analyze the trade-offs between translation quality and various modeling decisions. We report results on the publicly available TED talks multilingual corpus where we show that massively multilingual many-to-many models are effective in low resource settings, outperforming the previous state-of-the-art while supporting up to 59 languages. Our experiments on a large-scale dataset with 102 languages to and from English and up to one million examples per direction also show promising results, surpassing strong bilingual baselines and encouraging future work on massively multilingual NMT.
Multilingual neural machine translation (MNMT) learns to translate multiple language pairs with a single model, potentially improving both the accuracy and the memory-efficiency of deployed models. However, the heavy data imbalance between languages hinders the model from performing uniformly across language pairs. In this paper, we propose a new learning objective for MNMT based on distributionally robust optimization, which minimizes the worst-case expected loss over the set of language pairs. We further show how to practically optimize this objective for large translation corpora using an iterated best response scheme, which is both effective and incurs negligible additional computational cost compared to standard empirical risk minimization. We perform extensive experiments on three sets of languages from two datasets and show that our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا